and the second second second

TSX.V: PGE | OTC: PGEZF

H2

METALLIC GROUP

BUILDING A WORLD-CLASS GREEN METAL RESOURCE IN THE USA

February 2022

FORWARD-LOOKING STATEMENTS

Forward-Looking Information

This presentation contains certain forward-looking statements that reflect the current views and/or expectations of Group Ten Metals Inc. (the "Company" or "Group Ten Metals") with respect to its business and future events including statements regarding its exploration plans and the Company's expectations respecting future exploration results, the markets for the minerals underlying the Company' projects, and growth strategies. Forward-looking statements are based on the thencurrent expectations, beliefs, assumptions, estimates and forecasts about the business and the markets in which the Company operates. Investors are cautioned that all forward-looking statements involve risks and uncertainties, including: the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other exploration data, the uncertainties respecting historical resource estimates, the potential for delays in exploration or development activities, the geology, grade and continuity of mineral deposits, the possibility that future exploration, development or mining results will not be consistent with the Company's expectations, accidents, equipment breakdowns, title and permitting matters, labour disputes or other unanticipated difficulties with or interruptions in operations. fluctuating metal prices, unanticipated costs and expenses, uncertainties regulatory restrictions, including environmental regulatory restrictions. These risks, as well as others, including those set forth in the Company's filings with Canadian securities regulators or assumptions used to vary significantly. Accordingly, readers should not place undue reliance on forward-looking statements and information. There can be no assurance that forward-looking information, or the material factors or assumptions used to develop such forward-looking information, will prove to be accurate. The Company does not undertake any obligations to release publicly any revisions for updating any voluntary

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

Technical Information

The scientific and technical information in this presentation has been reviewed by the following non-independent qualified persons (as defined in NI 43-101): (a) in respect of the Stillwater West Project, Mike Ostenson, P. Geo., who is a Project Geologist of the Company; and (b) all other projects of Group Ten Metals, Debbie James, P. Geo, who is an independent consultant to the Company.

Mineral resources which are not mineral reserves do not have demonstrated economic viability. With respect to "indicated mineral resource" and "inferred mineral resource", there is a great amount of uncertainty as to their existence and a great uncertainty as to their economic and legal feasibility. It cannot be assumed that all or any part of a "measured mineral resource", "indicated mineral resource" or "inferred mineral resource" will ever be upgraded to a higher category.

Cautionary Note to US Investors Regarding Resource Estimates

The terms "mineral resource", "measured mineral resource", "indicated mineral resource", "inferred mineral resource" used herein are Canadian mining terms used in accordance with NI 43-101 under the guidelines set out in the Canadian Institute of Mining and Metallurgy and Petroleum (the "CIM") Standards on Mineral Resources and Mineral Reserves, adopted by the CIM Council, as may be amended from time to time. These definitions differ from the definitions in the United States Securities & Exchange Commission ("SEC") Industry Guide 7. In the United States, a mineral resource," "indicated mineral resource," and "inferred mineral resource" are recognized and required by Canadian regulations, they are not defined terms under standards in the United States and normally are not permitted to be used in reports and registration statements filed with the SEC. As such, information contained herein concerning descriptions of mineralization and resources under Canadian standards may not be comparable to similar information made public by U.S. companies in SEC filings. Accordingly, information herein containing descriptions of our mineral deposits may not be comparable to similar information made public by US companies subject to the reporting and disclosure requirements under US federal securities laws and the rules and regulations thereunder.

Third-Party Information

Where this presentation quotes any information or statistics from any external source, it should not be interpreted that the Company has adopted or endorsed such information or statistics as being accurate. Some of the information presented herein, including scientific and technical information on third-party projects, is based on or derived from statements by third parties, has not been independently verified by or on behalf of the Company and the Company makes no representation or warranty, express or implied, respecting the accuracy or completeness of such information or any other information or opinions contained herein, for any purpose whatsoever. References to third-party projects herein are for illustrative purposes only and are not necessarily indicative of the exploration potential, extent or nature of mineralization, or potential future results of the Company's projects.

THE METALLIC GROUP OF COMPANIES A Collaboration of Leading Independent Exploration Companies

Strategy and Approach to Business

Highly experienced leadership

A track record of major discoveries and project advancement along with significant share ownership in the companies

District-scale, brownfields properties

Consolidate districts adjacent to some of the industry's highestgrade mines, where potential exists to host world-class deposits

Make acquisitions during the lows in metal price cycle

Aggregation of highpotential holdings during bear market creates fundamental, counter-cycle strategic value for shareholders

Focus on underexplored brownfields areas

Existing infrastructure allows for rapid development timelines and reduced capital requirements compared to remote greenfields deposits

High-Grade Copper-Gold-Silver Carmacks Copper District Yukon, Canada

Systematic exploration approach

TSX-V:

Exploration utilizing new technologies and exploration models focused on large-scale discoveries

Long-term value creation

FSE:

5D32

OTCQB:

Resource development followed by expansion and advancement towards production

High-Grade Silver-Lead-Zinc Keno Hill Silver District Yukon, Canada

Platinum-Palladium-Nickel-Copper High-Grade Stillwater PGE District Montana, USA

MANAGEMENT TEAM

Veteran Management with Proven Track Record in Exploration and Mine Development

MICHAEL ROWLEY

25+ years executive experience in the exploration, mineral processing, and mine environmental industries

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

STRONG CORPORATE & TECHNICAL MANAGEMENT

Financing & markets

Over \$650M raised Global banking, evaluation and M&A expertise

Management

Combined 100+ years of corporate and exploration management, with juniors and majors

Exploration and development

Extensive, first-hand experience in the Stillwater and Bushveld districts, including the Platreef, among other top-tier districts and producers

President & CEO, Director	 Expertise in capital markets, acquisitions, project development, management and exploration operations Co-founder of Group Ten, active in other listed exploration companies including Granite Creek Copper
GREG JOHNSON Executive Chairman	 30 years experience in exploration, development and financing of large-scale mining projects Broad capital markets experience, raising over \$650 million in project financing Co-founder of NovaGold, former President & CEO of Wellgreen Platinum and South American Silver Exploration Manager Placer Dome (now Barrick Gold) Co-credited with discovery or expansion and advancement of major precious and base metal deposits
GREGOR HAMILTON Director	 24 years of experience in the mining sector as a geologist, investment banker and entrepreneur Capital markets expertise and global experience in M&A and structured finance Since 2010, involved in the acquisition and development of mineral properties within both public and private resource companies in the Americas
GORDON TOLL ndependent Director	 50+ years experience as a resource industry entrepreneur and developer of large mining operations Past roles as Deputy Chairman of Ivanhoe Mines and Chairman of Fortesque Minerals, in addition to senior leadership and executive roles with BHP Billiton, Rio Tinto, Atlantic Richfield, Texasgulf Direct involvement with over \$5B raised in the resource industry
REBECCA MORIART Chief Financial Officer	 Chartered Professional Account with over 20 years experience in mining industry Formerly Manager with Pricewaterhouse Coopers, focused on mineral resource sector
ALICIA MILNE Corporate Secretary	 20+ years of corporate secretarial & securities compliance experience with NYSE, TSX & TSX Venture listed companies, including Pretium Resources Member of the Governance Professionals of Canada
BRIAN CLONEY Advisor, Finance	 Over 35 years experience in public accounting and financial consulting experience with focus on the mining sector Past CFO of a number of publicly-traded resource companies, former Director of Group Ten Metals

TECHNICAL TEAM

World-Class Team with Experience at Stillwater, Bushveld, Platreef

CRAIG BOW, PH.D. Senior Geological Advisor	 40+ years experience in global exploration, mine geology, & project management, including exploration of the J-M Reef & advancement of the initial Stillwater Pd-Pt mine to production Recognized expert on global PGE-Ni-Cu systems, part of the toam responsible for multi-million ounce Arctic Platinum 	HARRY BURGESS, P.ENG. Advisor, Mining & Mine Engineering	 40+ years of mine engineering and management experience including senior positions with Anglo- American and others in Zambia and South Africa Co-founder of Micon International Limited
	partnership (Gold Fields/Outokumpu), former Exploration Mgr for Gold Fields, Sr. Technical positions for Cyprus Amax, Newcrest & AngloGold Ashanti	GARTH KIRKHAM, P.GEO. P.GEOPH.	 34+ years experience in the mineral exploration industry as a board member, leader, and geoscientist Founder of Kirkham Geosystems Ltd and was a
MIKE OSTENSON, P.GEO.	• 20 years experience in the Stillwater district including former VP Exploration for Premium Exploration and Senior Technical roles for Beartooth Platinum, Stillwater Mining Co.	Advisor, Geology & Mining	 founding director of Group Ten Metals Numerous professional designations and awards
Project Manager, Geologist, QP		DOUG WARKENTIN,	 30+ years of experience in the mining and mineral processing industries
JUSTIN MODROO, P.GEO.	 20 years industry experience, including work in the Stillwater Complex with Premium Exploration and Beartooth Platinum 	Advisor, Processing & Metallurgy	 Currently Senior Metallurgist at Kemetco Research Inc. Co-founder of Group Ten Metals and former Director
Project Geophysicist			

"The recognition of a Platreef setting in the Stillwater district is an exciting development" - Dr. David Broughton, September 2018 –

> Former Chief Geologist for Ivanhoe Mines and co-recipient of AME BC's 2016 Colin Spence Award for Excellence in Global Mineral Exploration for Ivanhoes' Flatreef discovery

PROJECT PORTFOLIO AND STRATEGY

- District-scale assets
- Adjacent to world-class mines/deposits
- 100% ownership on all projects
- Substantial databases, new geologic models, world-class teams
 - Potential for world-class discoveries
 - Focus on advancing Stillwater West

STILLWATER WEST PROJECT

- Adjacent to Sibanye-Stillwater's mine complex
- World-class magmatic system
- Inaugural NI43-101-compliant mineral resource estimate released Oct 2021, with exceptional expansion potential

NI 43-101 Mineral Resource Estimate - October 2021

BASE CASE: 0.20% NiEq cut-o	off (equals 0.53 g/t PdEq)*	Lower Grade Total:
157 Mt at 0.45% NiEq (or 1	.20 g/t PdEq) for contained met	1.1 Blbs battery metals
694 Mlbs Nickel AND	758 Koz Platinum AND 303 Koz G	2.4 Moz PGEs + gold
347 Mlbs Copper	1,314 Koz Palladium	- or -
69 Mlbs Cobalt	61 Koz Rhodium	1.6 Blbs NiEq / 6 Moz PdEq
HIGHER GRADE: 0.35% NiEq	<u>cut-off (equals 0.93 g/t PdEq)*</u>	Higher Grade Total:
97 Mt at 0.55% NiEq (or 1.4	7 g/t PdEq) for contained meta	857 Mlbs battery metals
535 Mlbs Nickel AND	530 Koz Platinum AND 249 Koz G	1.8 Moz PGEs + gold
278 Mlbs Copper	999 Koz Palladium	- or -

1.2 Blbs NiEq / 4.6 Moz PdEq

OTCQB:

PGEZF

FSE:

5D32

• Famously metal-rich district

43 Mlbs Cobalt

- Significant expansion potential
- Results pending from 2021 drill campaign

Mineral Resources are reported at a base case cut-off grade of 0.20% NiEq. Cut-off grades and equivalents are based on metal prices of \$7.00/Ib Ni, \$3.50/Ib Cu, \$20.00/Ib Co, \$900/oz Pt, \$1,800/oz Pd and \$1,600/oz Au, with assumed recoveries of 80% for Ni, 85% for Cu, 80% for Co, Pt, Pd and Au, a mining cost of US\$2.20/t rock, and processing and G&A cost of US\$12.75/t mineralized material. Mineral Resources are not Mineral Reserves as they do not have demonstrated economic viability. The quantity and grade of reported Inferred Resources are uncertain in nature and there has been insufficient exploration to define these Inferred Resources as Indicated or Measured. However, based on the current knowledge of the deposits, it is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

TSX-V:

PGE

40 Koz Rhodium

HIGH-DEMAND COMMODITIES

Attractive 'Internally Hedged' Blend of Commodities that is Globally Rare

Platinum Group Elements (PGEs)

Pt

Platinum 195.08

'GREEN' METALS

Battery Metals

Stillwater West Commodities by Value¹

Gross value and contained metal at 0.20% NiEq cut-off per Oct 2021 Resource Estimate²

Gold Gold 196.96

303 Koz gold in Oct 2021 mineral resource **estimate***, plus drill-defined high-grade gold at the Pine target at Stillwater West, and gold at Black Lake – Drayton project

Chromium

Chromium was recently proposed as critical in the US, and the Stillwater district is well-known for historic chromium production. The 2021 Stillwater West mineral resource estimate* inventoried 1.3B lbs of chromium that are not included in equivalency calculations.

TSX-V:

PGE

OTCQB:

PGEZF

To become a primary USbased source of battery and precious metals to meet surging demand from green transportation and energy needs

FSE:

5D32

Located in a famously productive and metal-rich US mining district, which hosts world-class mines and a smelter-refinery complex

(r

Chromium 51.996

NICKEL DEMAND DRIVERS

Electric Vehicles Creating New Demand

Listed as a 'critical mineral' by the US Interior Department, with the objective of advancing domestic supplies

2030 projected nickel demand of 1.3 million tonnes per annum (59% of current annual supply) as nickel content in batteries increases to 40kg per car Nickel will make up to 80% of the mass in cathodes 80% Ni

TSX-V:

PGE

New supply will be required to meet the 15.6x demand growth projected for 2030

OTCQB:

PGEZF

25 mn

EV Sales (millions USD)

Demand increase in battery metals 2019 to 2030

Source: BNEF, US Global Investors

15.6 X

FSE:

5D32

NICKEL SUPPLY / DEMAND

Projected Supply Deficit of 'Battery-Grade' Nickel

Surging demand for nickel sulphide ('battery-grade') from energy storage uses, especially electric vehicles

"Although the capacity to produce nickel sulfate is expanding rapidly, we cannot yet identify enough nickel sulfate capacity to feed the projected battery forecasts." – Wood Mackenzie

 \rightarrow Stillwater West contains the type of nickel – nickel sulphide –

Source: Wood Mackenzie

TSX-V:

PGE

630 kt

New nickel supply needed by 2030

OTCQB:

PGEZF

1.83 mt

New nickel supply

Supply

Gap

needed by 2040

FSE:

5D32

4000

3500

3000

Kt

PGE SUPPLY / DEMAND

Demand Imbalance Driving PGM Bull Market

Listed as 'critical minerals' by the US Interior Department, with the objective of advancing domestic supplies

PLATINUM

- World production dominated by South Africa (65%), Russia (14%) and Zimbabwe (10%)
- Diverse use in autocatalysts, jewelry and specialty industrial applications
- Dominant material for diesel engine emission controls
- Growing platinum demand from hydrogen fuel cells, investment demand, and catalytic convertors

2020 Platinum Demand 6.9Moz

PALLADIUM

- Dominant material for gasoline engine emission controls including hybrids
- Majority of supply from high-risk countries (South Africa, Russia)

TSX-V:

PGE

Continued year on year demand growth as stricter emission standards adopted globally

Platinum, Palladium and Rhodium Prices

 Ongoing fundamental supply – demand imbalance with 600koz supply deficit in 2020

OTCQB:

PGEZF

FSE:

5D32

2020 Palladium Demand 9.9Moz

Platinum is the preferred catalyst for the production of 'green' hydrogen from water, and also for the consumption of hydrogen in fuel cells, which is increasing in heavy machinery, long haul applications, and cars.

COPPER AND COBALT Electrification Is Driving Demand

Historical and forecasted

Acceleration in green electrification trends projected to drive strongest decade in copper demand growth post-2020

5x more copper is needed in electric vehicles than in ICE vehicles; by the end of decade EVs are projected to account for around 40% of the green copper demand

Copper content by vehicle type (kg)

TSX-V:

PGE

CRU forecasts cobalt demand from electric vehicles to account for more than 120,000 tonnes, or nearly 45% of the total, by 2025 compared with nearly 39,000 tonnes, or 27%, in 2020

OTCQB:

PGEZF

FSE:

5D32

Source: World Bank, Goldman Sachs Global Investment Research, Copper Alliance, ICA, Goldman Sachs Global Investment Research, CRU

1: References to adjoining properties are for illustrative purposes only and are not necessarily indicative of the exploration potential, extent or nature of mineralization or potential future results of the Company's projects. 2: Based on publicly disclosed production statistics of Sibanye-Stillwater including most recent CPR: https://www.sibanyestillwater.com/business/reserves-and-resources/

STILLWATER COMPLEX

LAYERED MAGMATIC COMPLEX (8KM THICK X 40KM LONG)

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

Target Schematic Section & Geologic Models

OPPORTUNITY

- Stillwater's J-M Reef was discovered in the 1970s based on parallels with similar deposits at the Bushveld Complex
- Bushveld continued to move ahead with the discovery and development of massive, polymetallic Platreef mines in the 1990s
- Group Ten is uniquely positioned to advance the "Platreef-in-Montana" model, with demonstrated "Platreefstyle" mineralization

- PLATREEF-STYLE DEPOSITS
- Lower in the layered stratigraphy
- Wide mineralized widths, 10 to 200 meters thick
- Ni-Cu sulphide mineralization, enriched in PGEs, Au, Co, others
- Typically low-cost bulk tonnage mining methods
- Comparables include the Platreef deposits, in South Africa:
 - AngloAmerican's Mogalakwena Mine
 - Ivanhoe's Platreef Mine
 - Platinum Group Metals' Waterberg project

→ Eight "Platreef-style" target areas at Stillwater West

- **REEF-TYPE DEPOSITS**
- Higher in the layered stratigraphy
- Typically narrow, 0.5 to 2 meters thick
- High to very high-grade at 3 to 17 g/t PGE, in Ni-Cu sulphides
- Typically higher cost, selective underground mining methods
- Comparable deposits include:
 - J-M Reef (Stillwater)
 - Merensky Reef (Bushveld)
 - UG2 Reef (Bushveld)

\rightarrow Six "Reef-type" target areas at Stillwater West

STILLWATER and BUSHVELD COMPARISON

Comparative **Stratigraphy** and Main PGE **Occurrences in** the Stillwater and Bushveld Complexes

Similarities

The Bushveld and Stillwater Igneous Complexes are similar layered magmatic intrusions

Opportunity

Stillwater's J-M Reef was discovered in the 1970s based on parallels with reef deposits at Bushveld, yet exploration at Stillwater lagged during discovery and development of the massive, polymetallic Platreef mines in the lower stratigraphy in the 1990s.

OTCQB:

PGEZF

Complex

BANDED

SERIES

FSE:

5D32

6 km

5

4

3

2

TSX-V:

PGE

References to third-party owned / operated projects are for illustrative purposes only and are not necessarily indicative of the exploration potential, extent or nature of mineralization or potential future results of the Company's projects. The Company does not have access to such project or underlying information and has not independently verified any of the scientific, technical or exploration information related to such third-party project.

Sheba's Ridge

Anglo American

CZ

STILLWATER WEST Size and Grade

The October 2021 mineral resource estimate makes a powerful combination with the 3D model of the 2020 IP survey in this district:

- Very large, coincident, highlevel chargeability and conductivity anomalies modeled in 3D across 12km
- Strong correlation with drilldefined "Platreef-style" mineralization at five deposits
- All deposits open along strike and down dip into untested target areas, including priority IP targets
- Excellent targeting tool for future drill campaigns, and expansion of developing resources
- Assays pending from 2021 expansion drill program

—— 2020 IP Survey Lines

2021 Mineral Resource Estimates: Battery metals, platinum group

2021 Expansion Drill Results with 2021 Resources Over Geophysics

DR and Hybrid Deposit Area (Chrome Mountain)

Six expansion holes were drilled in 2021 in the area of CM2020-04

	IN.	TERVA	L		PREC	CIOUS I	VETALS			BASE [VETALS		TOTAL	METAL
													EQUIV	ALENT
HOLE ID	From	То	Width	Pt	Pd	Au	Rh*	4E*	Ni	Cu	Со	NiEq	PdEq	NiEq
	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(Pd g/t)	(Ni %)
CM2021-01	0.0	728.1	728.1	0.12	0.17	0.02	*	0.31	0.13	0.03	0.013	0.18	0.73	0.27
including	230.5	583.4	352.9	0.21	0.27	0.03	*	0.52	0.17	0.04	0.015	0.23	1.04	0.39
including	397.2	556.4	159.2	0.31	0.41	0.05	*	0.77	0.18	0.03	0.017	0.25	1.29	0.48
including	397.2	447.4	50.2	0.48	0.48	0.04	*	1.00	0.19	0.03	0.015	0.25	1.45	0.54
including	423.4	430.6	7.2	0.93	1.33	0.05	*	2.32	0.24	0.03	0.018	0.31	2.72	1.02
including	479.8	549.2	69.4	0.27	0.47	0.06	*	0.80	0.18	0.04	0.017	0.25	1.35	0.51
including	687.4	728.1	40.7	0.07	0.20	0.02	*	0.28	0.18	0.07	0.021	0.27	0.97	0.36
Assays pending	from CIVI2	2021-02	to -06.	Data fr	om CIVI	2020-04	1 include	d below	for refe	rence:				
CM2020-04	0.0	454.8	454.8	0.04	0.07	0.02	-	0.13	0.14	0.020	0.014	0.19	0.65	0.24
including	99.4	192.0	92.7	0.08	0.17	0.07	0.021	0.34	0.20	0.023	0.016	0.26	1.08	0.40
including	123.7	177.4	53.6	0.11	0.25	0.12	0.032	0.51	0.27	0.036	0.018	0.34	1.49	0.56
including	128.6	137.2	8.5	0.08	0.32	0.69	0.011	1.10	1.11	0.188	0.053	1.35	4.65	1.74
including	149.4	177.4	28.0	0.19	0.37	0.01	0.057	0.63	0.07	0.009	0.010	0.11	1.08	0.41
including	273.1	333.5	60.4	0.06	0.09	0.04	0.012	0.20	0.28	0.082	0.024	0.39	1.26	0.47

CZ Deposit Area (Iron Mountain)

wo expansio	on holes	were	drilled	d in 20	021 in	the a	irea of	CZ201	9-01					
	IN	TERVA	L		PREC	CIOUS I	VETALS			BASE N	VETALS		TOTAL	METAL
													EQUIV	ALENT
IOLE ID	From	То	Width	Pt	Pd	Au	Rh*	4E*	Ni	Cu	Co	NiEq	PdEq	NiEq
	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(Pd g/t)	(Ni %)
72021-1	10.8	378 /	367.6	0.06	0.17	0.02	*	0.26	0.15	0.06	0.015	0.23	0.83	0.31
including	12.2	76.0	63.7	0.00	0.17	0.02	*	0.20	0.15	0.00	0.015	0.23	2.46	0.92
including	13.2	70.9	03.7	0.12	0.42	0.07	*	0.01	0.47	0.27	0.040	0.71	2.40	1.10
including	32.8	76.9	44.1	0.12	0.49	0.09		0.71	0.57	0.34	0.045	0.86	2.94	1.10
pending	396.4	472.8	76.4	*	*	*	*	*	*	*	*	*	*	*
ssays pending	from CZ20	021-02.	Data fro	m CZ20	019-01 i	nclude	d below	for refer	ence:					
Z2019-01	0.0	398.5	398.5	0.07	0.13	0.02	-	0.23	0.11	0.044	0.014	0.17	0.67	0.25
including	117.2	179.2	62.0	0.18	0.34	0.05	0.009	0.58	0.30	0.127	0.025	0.43	1.69	0.63

0.80

0.50 0.200 **0.042** 0.72

2.82

1.06

TSX-V:

PGE

HGR Deposit Area (Iron Mountain)

117.2 125.0

including

Six expansion holes drilled in 2021 in the area of IM2019-03 (assays pending)

0.24 0.48 0.04 0.044

7.8

Reported as Total Pt Equivalent Grade-Thickness Full 3E Data Base Metal Only Data Only 2 25 g-m 25 to 50 g-m 50 to 75 g-m 75 to 100 g-m 2021 MINERAL RESOURCE ESTIMATES Block Model Outlines :: Fugro DIGHEM EM Survey (Conductivity) 56kHz Apparent Resistivity (ohm-meters) 75 to 100

FSE:

5D32

OTCQB:

PGEZF

DRILL RESULTS

GEOLOGIC BOUNDARIES: BAN – Banded Series BZ – Bronzitite Zone PZ – Peridotite Zone HF - Hornfels

- Five deposits modeled in the 2021 mineral resource estimate across the core 9km project area
- Assays pending from 12 of 14 expansion holes drilled in 2021 into adjacent targets
- Kilometer-scale conductive anomalies demonstrate significant expansion potential
- Peridotite zone (PZ) highly prospective, hosts all five deposits to date

2021 Expansion Drill Results with 2021 Resources Over Multi-Kilometer-Scale Metals-in-Soil Anomalies

18

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

2021 Resources With Sensitivity Analysis Over Geology

								GRAD	E									CON	TAINED	METAL			_	
Cut-	DEPOSIT	TONNAGE	E	ase & Ba	ttery Meta	als	Pla	tinum Gr	oup & Pre	ecious Me	tals	Total	Total	B	ase & Ba	ttery Meta	ls	Pla	atinum Gro	oup & Pre	cious Me	tals	Total	Total
Off	DEFOSIT	TONNAGE	Ni	Cu	Co	NiEq	Pt	Pd	Au	Rh	4E	NiEq	PdEq	Ni	Cu	Co	Total	Pt	Pd	Au	Rh	Total	NiEq	PdEq
		MT	%	%	%	%	g/t	g/t	g/t	g/t	g/t	%	g/t	Mlbs	Mlbs	Mlbs	Mlbs	Koz	Koz	Koz	Koz	Koz	Mlbs	Koz
_	Chrome Mtn - Hybrid & DR	64.5	0.17	0.05	0.01	0.22	0.19	0.29	0.07	0.020	0.57	0.39	1.04	242	71	14.2	327	393	600	145	41	1179	554	2,155
ш	Iron Mtn - CZ	26.9	0.23	0.13	0.02	0.35	0.11	0.24	0.05	0.007	0.41	0.47	1.25	137	77	11.9	226	95	207	43	6	351	279	1,085
ī	Iron Mtn - HGR	38.2	0.26	0.19	0.02	0.41	0.14	0.29	0.07	0.012	0.51	0.57	1.52	219	160	16.8	395	171	355	85	14	625	480	1,865
%	Iron Mtn - Central	20.8	0.15	0.07	0.02	0.24	0.10	0.21	0.03	NA	0.34	0.35	0.93	69	32	9.2	110	66	140	20	NA	226	161	625
20	Iron Mtn - Crescent	6.9	0.26	0.11	0.02	0.37	0.18	0.13	0.08	NA	0.39	0.47	1.25	40	17	3.1	60	40	29	17	NA	86	72	280
•	Total at 0.20% NiEq	157.3	0.20	0.10	0.02	0.31	0.15	0.26	0.06	0.012	0.48	0.45	1.20	694	347	69.4	1,110	758	1,314	303	61	2,436	1,561	6,068
_	Chrome Mtn - Hybrid & DR	36.7	0.20	0.07	0.02	0.29	0.22	0.37	0.09	0.022	0.70	0.51	1.36	162	57	16.2	234	259	436	106	25	826	412	1,604
щ	Iron Mtn - CZ	17.4	0.28	0.16	0.02	0.42	0.13	0.28	0.06	0.008	0.48	0.57	1.52	107	61	7.7	176	72	156	33	4	265	218	848
Ē	Iron Mtn - HGR	30.0	0.29	0.22	0.02	0.46	0.15	0.32	0.08	0.011	0.56	0.63	1.68	192	146	13.2	351	144	309	77	10	540	417	1,623
%	Iron Mtn - Central	7.6	0.20	0.09	0.02	0.30	0.12	0.26	0.04	NA	0.42	0.44	1.17	34	15	3.4	52	29	63	9	NA	101	74	287
.35	Iron Mtn - Crescent	5.4	0.29	0.12	0.02	0.41	0.21	0.14	0.09	NA	0.44	0.52	1.39	35	14	2.4	52	36	24	15	NA	75	62	243
•	Total at 0.35% NiEq	97.1	0.25	0.13	0.02	0.37	0.17	0.32	0.08	0.013	0.58	0.55	1.47	535	278	42.8	857	530	999	249	40	1,818	1,178	4,581

Extensive drill data base to guide resource expansion:

OTCQB:

PGEZF

FSE:

5D32

3E Data Base Metal

Only Data Only

Full

Data

TSX-V:

PGE

- 83 holes define current deposits
- Assays pending from 12 of 14 expansion holes drilled in 2021 into adjacent targets
- Additional 133 holes across property to speed resource expansion

See news release Oct 21, 2021. Rh modeled but not included in equivalents. Equivalency calculations and cut-off grades based on \$7.00/lb Ni, \$3.50/lb Cu, \$20.00/lb Co, \$900/oz Pt, \$1,800/oz Pd, and \$1,600/oz Au.

Peers and Comparables

Peers and Comparables

21

Peers and Comparables

Market Capitalization

See News Release "Group Ten Metals Identifies 12 Major Geophysical Conductor Anomalies at Stillwater West Project, Montana, USA" dated Feb. 26, 2018. Grade thickness values for drill holes are shown for comparative purposes by multiplying mineralized intercepts times drilled width that are believed to be representative of true widths. Platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using \$7.00/lb Ni, \$3.50/lb Cu, \$20.00/lb Co, \$900/oz Pt, \$1,800/oz Pd and \$1,600/oz Au and have not been adjusted to reflect metallurgical recoveries.

TSX-V:

OTCQB:

FSE:

Soil Geochemistry

Highly anomalous precious and base metal values cover 25km strike in lower Stillwater stratigraphy

- High levels of platinum, palladium, gold, nickel, copper and other metals in soil geochemistry across very large areas
- **Gold, cobalt, chromium** and other metals also highly anomalous across large areas
- Strong soil response proximal to known mineralization in deposit areas provide priority targets and demonstrates the effectiveness of soils as an exploration tool at Stillwater, especially in the Peridotite Zone (PZ)
- Four new kilometer-scale soil anomalies identified (untested to date) in 2019, including expansion of highly anomalous gold in soils at Pine target area
- Strong spatial correlation with broad, highlevel electro-magnetic conductor anomalies

Kilometer-Scale Magmatic Targets in a Famously Metal-Rich District

Magnetic Vector Inversion (MVI) results showing kilometer-scale exploration targets (pink areas) that continue below the five known mineralized zones at Stillwater West (yellow text). Potential for significant depth extension, including possible magmatic feeder zones.

STILLWATER WEST 2020 **Progress and Next Steps** Chrome Mountain drill program IP survey and 3D model over core 9.2km area Drill-defined Platreef-style mineralization modeled in four target areas 2019 Discovery of four new multi-kilometre-scale soil anomalies • High-grade gold and rhodium results • Initial block modeling of most advanced targets 2021 2017 - 2018• Iron Mtn drill program, plus relogging/re-assay of past core • Inaugural resource estimates Confirmation of Platreef-style • Acquisition, expansion • Largest drill campaign to date mineralization Data compilation and modeling Expanded IP survey Collaboration with GoldSpot (AI) Initial field programs Prioritize expansion targets and machine-learning) 2022 & 2017 2019 2020 2021 2018 **BEYOND UPCOMING CATALYSTS**

• Drill results

TSX-V:

PGE

- Agreements on secondary assets
- ESG and metallurgy updates
- Updated resource estimate (target 2022)

OTCQB:

PGEZF

FSE:

5D32

CAPITAL STRUCTURE

OTCQB: FSE: PGE 5D32 PGEZF

Retail - 16%

Institutional

33%

& Relative Share Performance

Visibility to over \$19M:

- +\$3M cash
- \$16M in-the-money warrants and options

Other value:

• 2.8M Heritage Mining shares pending (price tbd)

HNW - 29%

Share price (as of January 24, 2022)	C\$0.38
Shares issued & outstanding	167M
Options (average exercise price: \$0.23)	14M
Warrants (average exercise price: \$0.30)	43M
Fully diluted shares outstanding	225M
Market capitalization (basic)	C\$63M
Cash & cash equivalents balance (no debt)	~C\$3.6M
In-the-money options & warrants	~C\$16M

BLACK LAKE – DRAYTON

Underexplored High-Grade Gold Project in Active Rainy River District

OVERVIEW

- 137 km² land package adjoining Treasury Metals' recently consolidated +3Moz Goliath Gold Complex
- 30km of underexplored Archean greenstone strike
- High-grade gold demonstrated in 127 drill-hole database, historic bulk samples
- 100%-owned, low carrying cost
- Direct road access, close to rail and power
- Discovery and development of Rainy River lead the district in the 1990s, which is now over 10Moz and growing

EARN-IN WITH HERITAGE MINING

- Definitive agreement signed November 2021 grants Heritage right to earn up to a 90% interest over four years by:
 - Issuing 7.2M shares, plus \$320,000 cash
 - Completing \$5M exploration
 - Granting Group Ten a 10% carried interest through Feasibility Study
 - Paying up to \$10M in discovery bonuses at \$1/oz Au or AuEq

KLUANE PGE-NI-CU PROJECT

Premier land position in an emerging, world-class Canadian PGE-Ni-Cu district

OVERVIEW

- Kluane Mafic-Ultramafic belt extends 600 km from northern British Columbia to central Alaska and hosts known PGE-Ni-Cu deposits
- 100% ownership in four claim blocks
- The multi-million-ounce Wellgreen PGE-Ni-Cu-Co deposit demonstrates the world-class potential of the belt
- Similar geology to largest known PGE-Ni-Cu deposits including the Bushveld and Stillwater complexes

NEAR-TERM PRIORITY

- Continue ongoing discussions re best avenue to monetize asset
- Undertake modest surface exploration program to expand known mineralization, refine targets

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

SUMMARY

Stillwater West Project

- NI 43-101-compliant mineral resource estimate of 1.1Blbs Ni, Cu, and Co, plus 2.4Moz Pd, Pt, Rh and Au*
- District-scale asset, 100% owned
- Top-tier US jurisdiction with world-class mineral endowment and a long history of production
- Attractive mix of in-demand commodities

Exploration Potential

- Underexplored, with demonstrated scale and grade
- Substantial database and predictive geologic model speeds progress
- Multiple kilometer-scale targets for expansion of existing resources
- Assays pending from 2021 expansion drill campaign

Company

- Timing Growth stage company
- People Veteran management and technical teams
- Fully permitted and funded, with no debt

TSX-V:

PGE

• Assets - 100% ownership of three district-scale assets

OTCQB:

PGEZF

FSE:

5D32

Potential to become a world-class, US-based source of battery metals & platinum group elements

*See news release Oct 21, 2021. Cut-off grades and equivalents are based on metal prices of \$7.00/b Ni, \$3.50/b Cu, \$20.00/b Co, \$900/oz Pt, \$1,800/oz Pd and \$1,600/oz Au, with assumed recoveries of 80% for Ni, 85% for Cu, 80% for Co, Pt, Pd and Au, a mining cost of US\$2.20/t rock, and processing and G&A cost of US\$12.75/t mineralized material. Mineral Resources are not Mineral Reserves as they do not have demonstrated economic viability. The quantity and grade of reported Inferred Resources are uncertain in nature and there has been insufficient exploration to define these Inferred Resources as Indicated or Measured. However, based on the current knowledge of the deposits, it is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. Rh modeled but not included in equivalents.

Group Ten Metals Inc.

Suite 904 - 409 Granville Street Vancouver, BC, Canada, V6C 1T2 Email: info@grouptenmetals.com Tel: 604.357.4790 Toll Free: 888.432.0075 www.grouptenmetals.com

TSX: PGE.V | OTCQB: PGEZF | FSE: 5D32

APPENDIX

GROUPTEN

Chrome Mountain Target Area Cross-Section CM-4

• Discovery of new high-grade and high tenor nickel sulphide horizons in 2020

CM2020-02:

126 m of 1.33 g/t TotPtEq (0.29% TotNiEq), including:
24 m of 2.76 g/t TotPtEq (0.60% TotNiEq) which includes:
6.1 m of 4.50 g/t TotPtEq (0.98% TotNiEq) including 1.13 g/t Pd

CM2020-03:

- 122 m of 1.27 g/t TotPtEq (0.28% TotNiEq), including:
 23 m of 1.64 g/t TotPtEq (0.36% TotNiEq) which includes:
 6.1 m of 3.51 g/t TotPtEq (0.77% TotNiEq) including 0.97 g/t Pd
- Results pending from 2021 resource expansion drilling at the Hybrid and DR deposits

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,650/oz palladium (Pd), \$1,500/oz gold (Au), and \$7,000/oz rhodium (Rh). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

Chrome Mountain Target Area Cross-Section CM-6

 Results pending from 2021 resource expansion drilling at the Hybrid and DR deposits

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,650/oz palladium (Pd), \$1,500/oz gold (Au), and \$7,000/oz rhodium (Ph). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

Chrome Mountain Target Area Cross-Section CM-17

 Discovery of new and well-mineralized nickel sulphide-PGE horizons that are over 1km from other drill-defined mineralization

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,650/oz palladium (Pd), \$1,500/oz gold (Au), and \$7,000/oz rhodium (Rh). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

TSX-V: OTCQB: FSE: **5D32** PGEZF PGE

GRADE THICKNESS

Grade x Width

TotNiEg

(%-meter)

82.7

31.5

TotPtEg

(gram-meter)

378.2

143.9

TOTAL METAL

EQUIVALENT

TotPtEq TotNiEq

(Ni %)

0.19

0.24

(Pt g/t)

0.85

1.10

STILLWATER WEST

Drill Results - Discovery Target at the Hybrid Unit, Chrome Mountain Area

Multiple long drill intervals returned multigram-per-tonne precious metals (Pd, Pt, Au)

Five holes at >300 grade-thickness d metal content and intervals of miner encountered in th

	,	including	282.2	362.7	80.5	0.06	0.07	0.02	0.20	0.16	0.04	0.016	0.16	1.25	0.27	100.2	21.9
		CM2007-02	0.0	387.7	387.7	0.12	0.16	0.01	0.39	0.09	0.01	0.010	0.13	0.99	0.22	385.1	84.2
: >300 gram-meter TotPtEg		including	24.1	74.1	50.0	0.49	0.91	0.06	2.00	0.14	0.03	0.012	0.20	2.91	0.64	145.4	31.8
		including	38.7	68.6	29.9	0.60	1.25	0.09	2.67	0.19	0.04	0.014	0.26	3.86	0.85	115.4	25.2
less demonstrate significant							0.05	0.05	0.00				0.46	1.00	0.05	202.6	
nt and some of the longest		CM2007-04	1.5	244.0	242.9	0.26	0.35	0.05	0.89	0.11	0.03	0.011	0.16	1.62	0.35	393.0	86.1
		including	225	51.8	110.0	0.50	0.30	0.03	2.10	0.12	0.05	0.010	0.17	2.13	0.47	255.4 57.1	55.4 12.5
nineralization ever		including	77.4	107.3	29.9	0.55	0.96	0.13	2.24	0.13	0.04	0.011	0.18	3.07	0.67	91.6	20.0
in the Stillwater district		including	88.1	95.1	7.0	0.88	1.76	0.18	3.90	0.15	0.04	0.012	0.21	4.85	1.06	34.0	7.4
		including	170.7	178.0	7.3	0.83	1.54	0.13	3.41	0.12	0.04	0.011	0.18	4.25	0.93	31.1	6.8
		CM2007-07	1.5	227.1	225.6	0.15	0.32	0.05	0.73	0.13	0.04	0.011	0.19	1.58	0.34	355.6	77.8
	л /	including	148.7	172.5	23.8	0.26	0.70	0.08	1.47	0.18	0.08	0.013	0.27	2.69	0.59	63.9	14.0
Grade-Thickness:		including	163.4	172.5	9.2	0.43	1.31	0.10	2.62	0.22	0.10	0.014	0.32	4.07	0.89	37.2	8.1
 Sibanve-Stillwater (J-M Reef): 									0.70								75.0
2m @ 17 g/t Pd+Pt = 34 g-m		CM2007-08	122.1	209.7	209.7	0.20	0.26	0.07	0.70	0.14	0.04	0.013	0.21	1.64	0.30	344.Z	/5.3 11.0
		including	123.1	133.5	10.4	0.46	1.02	0.07	2 21	0.14	0.04	0.013	0.20	3 30	0.01	34.2	75
• Group ren:		including	120.1	100.0	10.4	0.40	1.02	0.11	2.21	0.17	0.00	0.014	0.24	5.50	0.72	54.2	7.5
50m @ 1.4 g/t Pd+Pt = 70 g-m		CM2007-10	3.4	143.6	140.2	0.21	0.29	0.04	0.72	0.15	0.04	0.013	0.21	1.68	0.37	236.1	51.7
(plus Ni, Cu, Co, Au, Rh values)		including	9.5	44.8	35.4	0.39	0.58	0.06	1.40	0.15	0.05	0.012	0.22	2.38	0.52	84.3	18.4
		including	92.4	108.2	15.9	0.35	0.48	0.07	1.22	0.24	0.08	0.016	0.33	2.74	0.60	43.4	9.5
		-			the second se												

INTERVAL

То

(m)

448.1

138.4

From

(m)

2.1

7.9

Width

(m)

445.9

130.5

Pt

(g/t) (g/t)

0.10

0.26

HOLE ID

CM2007-01

including

PRECIOUS METALS

Au

(g/t)

0.01

0.01

Pd

0.09

0.23

PtEq

(g/t)

0.25

0.63

Ni

(%)

0.09

0.07

BASE METALS

Co

(%)

0.011

0.009

NiEq

(%)

0.09

0.07

Cu

(%)

0.01

0.01

Highlight intercepts with grade-thickness values over 25 gram-meter TotPtEq are presented above. Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,400/oz palladium (Pd), and \$1,400/oz qold (Au). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Total platinum equivalent grade-thickness was determined by multiplying the thickness (in meters) by the Total Platinum Equivalent grade (in grams/tonne) to provide gram-meter values (g-m) as shown. Total nickel equivalent grade-thickness was determined by multiplying the thickness (in meters) by the Total Nickel Equivalent grade (in percent) to provide percent-meter values as shown. Grade-thickness values have been determined across continuously mineralized intervals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEg value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEg equates to 1.0% CuEq. Platinum equivalent has been used based on the historic values of platinum and palladium. Platinum equivalent values may be converted to palladium equivalent values by multiplying the PtEq value by the price ratio of the two (ie times 0.64 per the above prices), such that 1 q/t PtEq equates to 0.64 q/t PdEq. Intervals are reported as drilled widths and are believed to be representative of true widths. All holes were conducted by Group Ten's QP and are not considered historic.

2020 Drill Results Chrome Mountain Target Area

- The first drill program guided by the 2020 Induced Polarization (IP) geophysical survey
- Multiple new well-mineralized horizons identified, including high-grade, and high-tenor, nickel sulphides
- All five holes returned intervals from 120 to 530 meters of continuous nickel and copper sulphide mineralization, enriched in palladium, platinum, rhodium, gold, and cobalt, starting at or near surface
- Each hole also returned higher-grade intervals over widths of 50 to 150 meters in addition to more selective high-grade intervals
- Results indicate potential for both bulk and selective mining scenarios at 0.5 g/t PtEq cut-off and 1.5 g/t PtEq cut-off respectively

	II	ITERV/	AL.		PREC		IETALS			BASE N	ETALS		TOTAL METAL EQUIVALENT		GRADE TH Grade x	DE THICKNESS ade x Width	
HOLE ID	From (m)	To (m)	Width (m)	Pt (g/t)	Pd (g/t)	Au (g/t)	Rh (g/t)	PtEq (g/t)	Ni (%)	Cu (%)	Со (%)	NiEq (%)	TotPtEq (Pt g/t)	TotNiEq (Ni %)	TotPtEq (gram-meter)	TotNiEq (%-meter)	
CM2020-01	0.0	533.4	533.4	0.04	0.02	0.01	0.003	0.12	0.10	0.004	0.011	0.14	0.76	0.17	404.6	88.5	
including	100.0	109.7	9.8	0.51	0.07	0.00	0.035	0.92	0.11	0.003	0.015	0.16	1.67	0.37	16.3	3.6	
including	403.6	533.4	129.8	0.01	0.01	0.00	0.004	0.06	0.15	0.004	0.015	0.20	0.96	0.21	124.7	27.3	
CM2020-02	20.1	145.7	125.6	0.08	0.19	0.03	0.009	0.55	0.12	0.028	0.012	0.17	1.33	0.29	167.2	36.6	
including	59.7	143.3	83.5	0.12	0.26	0.04	0.013	0.76	0.14	0.038	0.014	0.21	1.71	0.37	142.5	31.2	
including	60.8	84.7	23.9	0.12	0.50	0.06	0.019	1.29	0.22	0.072	0.018	0.32	2.76	0.60	65.9	14.4	
including	76.2	82.3	6.1	0.25	1.13	0.16	0.043	2.93	0.23	0.113	0.016	0.34	4.50	0.98	27.4	6.0	
including	114.6	129.2	14.6	0.28	0.47	0.08	0.029	1.48	0.18	0.041	0.015	0.25	2.61	0.57	38.2	8.3	
CM2020-03	20.7	142.6	121.9	0.11	0.17	0.02	0.015	0.57	0.10	0.022	0.012	0.15	1.27	0.28	155.1	33.9	
including	39.0	45.1	6.1	0.41	0.97	0.05	0.053	2.68	0.12	0.048	0.011	0.18	3.51	0.77	21.4	4.7	
including	68.3	80.5	12.2	0.22	0.38	0.03	0.029	1.20	0.15	0.047	0.015	0.22	2.22	0.48	27.0	5.9	
including	118.3	141.4	23.2	0.19	0.21	0.02	0.026	0.81	0.13	0.021	0.013	0.18	1.64	0.36	38.1	8.3	
including	124.4	141.4	17.1	0.23	0.25	0.02	0.030	0.95	0.13	0.016	0.013	0.18	1.78	0.39	30.4	6.7	
CM2020-04	0.0	454.8	454.8	0.04	0.07	0.02	0.007	0.26	0.14	0.020	0.014	0.19	1.13	0.25	515.4	112.8	
including	99.4	182.3	82.9	0.08	0.17	0.08	0.022	0.70	0.22	0.025	0.016	0.28	2.01	0.44	166.3	36.4	
including	123.7	177.4	53.6	0.11	0.25	0.12	0.032	1.01	0.27	0.036	0.018	0.34	2.58	0.57	138.6	30.3	
including	128.6	137.2	8.5	0.08	0.32	0.69	0.011	1.90	1.11	0.188	0.053	1.38	8.20	1.79	70.0	15.3	
including	273.1	333.5	60.4	0.06	0.09	0.04	0.012	0.39	0.28	0.082	0.024	0.40	2.22	0.48	133.7	29.3	
CM2020-05	169.5	318.5	149.0	0.06	0.08	0.01	0.010	0.30	0.14	0.013	0.013	0.20	1.19	0.26	177.7	38.9	
including	170.7	279.5	108.8	0.03	0.04	0.01	0.002	0.14	0.17	0.014	0.015	0.23	1.18	0.26	128.1	28.0	
including	289.0	300.5	11.6	0.41	0.54	0.02	0.083	2.09	0.11	0.028	0.009	0.16	2.80	0.61	32.4	7.1	

Highlight intercepts with grade-thickness values over 25 gram-meter TotPtEq are presented above. Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,650/oz palladium (Pd), \$1,500/oz gold (Au), and \$7,000 rhodium (Rh). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Total platinum equivalent grade-thickness was determined by multiplying the thickness (in meters) by the Total Platinum Equivalent grade (in grams/tonne) to provide gram-meter values (g-m) as shown. Total nickel equivalent grade-thickness was determined by multiplying the two (in provide percent-meter values as shown. Grade-thickness values have been determined across continuously mineralized intervals. Nickel equivalent values may be converted to copper equivalent values by multiplying the thic values by multiplying the PtEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Platinum equivalent to 0.64 g/t PdEq. Intervals are reported as drilled widths and are believed to be representative of true widths.

Iron Mountain Target Area CZ Deposit Cross-Section IM-4

One of five deposits with demonstrated 'Platreef-style' bulk tonnage PGE-Ni-Cu-Co mineralization over hundreds of meters in thickness.

- Drilling returned some of the thickest mineralized intercepts ever recorded in the district
- Results that are comparable to the style of mineralization found in South Africa's Platreef district, which hosts some of the world's largest nickel-copper sulphide hosted PGE mines
- Results from 2021 resource expansion drilling, announced Dec 20, 2021, expected to drive planned resource update in 2022

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,400/oz palladium (Pd), and \$1,400/oz gold (Au). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

Iron Mountain Target Area CZ Deposit Cross-Section IM-5

One of five deposits with demonstrated 'Platreef-style' bulk tonnage PGE-Ni-Cu-Co mineralization over hundreds of meters in thickness.

- Drilling returned some of the thickest mineralized intercepts ever recorded in the district
- Successful delineation of a maiden resource with multiple very wide intervals of nickel and copper sulphide, enriched in palladium, platinum and gold, starting from surface
- Results pending from 2021 resource expansion drilling

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,400/oz palladium (Pd), and \$1,400/oz gold (Au). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

TSX-V:

PGE

OTCQB:

PGEZF

FSE:

5D32

Iron Mountain Target Area HGR Deposit Cross-Section IM-18

One of five deposits with demonstrated 'Platreef-style' bulk tonnage PGE-Ni-Cu-Co mineralization over hundreds of meters in thickness.

- Drilling returned some of the thickest mineralized intercepts ever recorded in the district
- Successful delineation of a maiden resource with multiple very wide intervals of nickel and copper sulphide, enriched in palladium, platinum and gold, starting from surface
- Results pending from 2021 resource expansion drilling

Total Platinum Equivalent (TotPtEq g/t) and Total Nickel Equivalent (TotNiEq %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,400/oz palladium (Pd), and \$1,400/oz gold (Au). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

IM2019-03: 272m @ 1.90 g/t TotPtEq (or 0.42% TotNiEq), including:

- 141 meters @ 2.59 g/t TotPtEq (or 0.57% TotNiEq), starting at 80 meters; and
- 26.8 meters @ 1.19 g/t 3E (as 0.33 g/t Pt, 0.77 g/t Pd, plus 0.08 g/t Au) plus
 0.34% Ni, 0.15% Cu, and 0.019% Co, for 3.84 g/t TotPtEq (or 0.84% TotNiEq)

IM2019-01: 327m @ 1.21 g/t TotPtEq (or 0.26% TotNiEq), including 254m @ 1.39 g/t TotPtEq (or 0.30% TotNiEq)

<u>IM2002-12:</u> 4.1m @ 3.09 g/t 3E, 0.14% Ni, 0.02% Cu, and 0.009% Co

Cross-section view is to the North West

IM2002-07: 8.0m @ 3.65 g/t 3E, 0.14% Ni, 0.03% Cu, and 0.013% Co, starting at surface 178.9m 293.1m 261.8m IM2019-02 IM2019-03 251.6m 355-68 IM2019-01 84.4m 253.4m 93.4m 106.7m M2002-12 IM2002-07 355-62 IM2002-14 Shallow holes ending in Ni-Cu sulphide mineralization Legend Olivine rich (0) Bronzite rich (B) Mafic dikes (mi) Intrusive dunite (ioC) Hornfels (hfs) Iron formation (if) Disseminated chromite Fault shear Drill Hole Histogram PGM+Au 0-1 IM2019-02: 175m @ 1.50 g/t TotPtEq 0-0.5 Base Metal NiEq % (or 0.33% TotNiEq), including 90m @ 2.04 g/t TotPtEq (or 0.45% TotNiEq) **Cross-Section IM-18** OPEN iron Mountain Target Area OPEN STILLWATER WEST PROJECT GROUPTEN

2019 Drill Results HGR Target **Iron Mountain Area**

2019 results returned some of the thickest mineralized intercepts, and the highest grade-thickness values, ever recorded in the district, including potential **bulk** and selective mining scenarios

	11	NTERV	AL	PF	RECIOU	S MET	ALS		BASE N	NETALS		TOTAL	METAL	GRADE TH	ICKNESS
												EQUIV	ALENT	Grade x	Width
HOLE ID	From	То	Width	Pt	Pd	Au	3E	Ni	Cu	Co	NiEq	TotPtEq	TotNiEq	TotPtEq	TotNiEq
	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(Pt g/t)	(Ni %)	(gram-meter)	(%-meter)
IM2019-01	0.0	326.0	326.9	0.06	0.11	0.02	0 18	0.14	0.05	0.014	0.21	1 21	0.26	39/1 1	86.2
including	31.0	284.7	253.7	0.07	0.11	0.02	0.31	0.14	0.05	0.014	0.24	1.39	0.30	353.4	77.3
including	33.8	36.9	3.0	0.49	1.99	0.13	2.61	0.16	0.05	0.013	0.23	4.82	1.06	14.7	3.2
IM2019-02	0.0	175.1	175.1	0.07	0.13	0.05	0.25	0.16	0.09	0.014	0.25	1.50	0.33	262.4	57.4
including	64.6	154.8	90.2	0.09	0.18	0.09	0.36	0.21	0.14	0.015	0.33	2.04	0.45	183.9	40.2
including	115.2	118.3	3.0	0.24	0.44	0.67	1.35	0.51	0.17	0.015	0.64	4.91	1.07	15.0	3.3
IM2019-03	0.0	272.5	272.5	0.11	0.22	0.03	0.36	0.20	0.11	0.016	0.30	1.90	0.42	517.7	113.3
including	79.9	220.7	140.8	0.16	0.34	0.05	0.55	0.26	0.16	0.018	0.40	2.59	0.57	364.3	79.7
including	79.9	133.5	53.6	0.26	0.59	0.07	0.92	0.28	0.13	0.019	0.41	3.16	0.69	169.4	37.1
including	94.5	121.3	26.8	0.33	0.77	0.08	1.19	0.34	0.15	0.019	0.48	3.84	0.84	103.0	22.5
AND	140.8	215.8	75.0	0.09	0.18	0.04	0.31	0.25	0.20	0.017	0.41	2.31	0.51	173.3	37.9

Assuming a 0.5g/t PtEq cut-off grade:

- 272m @ 1.90g/t PtEq, or "
 - 0.42% NiEq, or
 - " 0.84% CuEq

Assuming a 1.5g/t PtEq cut-off grade: 141m @ 2.59g/t PtEq, or " 0.57% NiEq, or " 1.14% CuEq

Approximate Width of Ivanhoe's Flatreef Deposit

TSX-V:

PGE

Grade-Thickness:

- Sibanye-Stillwater (J-M Reef): • 2m @ 17 g/t Pd+Pt = **34 g-m**

OTCQB:

PGEZF

FSE:

5D32

- Group Ten:
- 272.5m @ 1.90 TotPtEq = 518 g-m

Highlight intercepts with grade-thickness values over 100 gram-meter TotPtEg are presented above, except as noted. Total Platinum Equivalent (TotPtEg q/t) and Total Nickel Equivalent (TotNiEg %) calculations reflect total gross metal content using metals prices as follows (all USD): \$6.00/lb nickel (Ni), \$3.00/lb copper (Cu), \$20.00/lb cobalt (Co), \$900/oz platinum (Pt), \$1,400/oz palladium (Pd), and \$1,400/oz qold (Au). Values have not been adjusted to reflect metallurgical recoveries. Total metal equivalent values include both base and precious metals. Total platinum equivalent grade-thickness was determined by multiplying the thickness (in meters) by the Total Platinum Equivalent grade (in grams/tonne) to provide gram-meter values (g-m) as shown. Total nickel equivalent grade-thickness was determined by multiplying the thickness (in meters) by the Total Nickel Equivalent grade (in percent) to provide percent-meter values as shown. Nickel equivalent values may be converted to copper equivalent values by multiplying the NiEq value by the price ratio of the two (ie times two per the above prices), such that 0.5% NiEq equates to 1.0% CuEq. Intervals are reported as drilled widths, and are believed to be representative of true widths.

