

Epigenetics & BET Inhibition Q1 2017 – Cowen Conference

Today's Agenda

- 1. Corporate Overview
- 2. Market Opportunity
- 3. BET Inhibition Technology
- 4. Clinical Trial Updates
- 5. Key Market Research: Prescribers & Payers
- 6. Summary

Safe Harbor

This presentation may contain certain forward-looking information as defined under applicable • Canadian securities legislation, that are not based on historical fact, including without limitation statements containing the words "believes", "anticipates", "plans", "intends", "will", "should", "expects", "continue", "estimate", "forecasts" and other similar expressions. In particular, this presentation includes forward looking information relating to the Company's clinical trials and the potential role of apabetalone in the treatment of CVD, DM, chronic kidney disease, Orphan diseases, and peripheral artery disease. Our actual results, events or developments could be materially different from those expressed or implied by these forward-looking statements. We can give no assurance that any of the events or expectations will occur or be realized. By their nature, forward-looking statements are subject to numerous assumptions and risk factors including those discussed in our Annual Information Form and most recent MD&A which are incorporated herein by reference and are available through SEDAR at www.sedar.com. The forward-looking statements contained in this presentation are expressly qualified by this cautionary statement and are made as of the date hereof. The Company disclaims any intention and has no obligation or responsibility, except as required by law, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

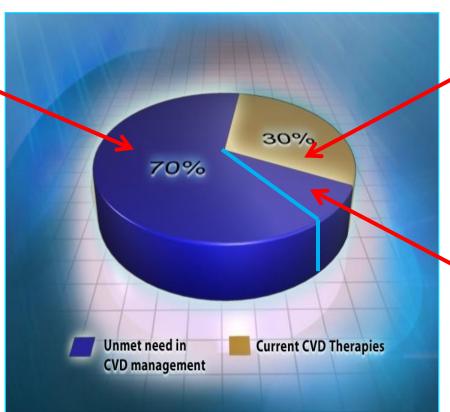
Corporate Review – RVX

Founded	2001		
Ticker	TSE-RVX		
Market Cap	~\$210 MM		
Shares Outstanding	105.4MM ~120MM fully diluted		
Cash Burn	~\$2.2 MM per month		
Top Shareholders	Eastern Capital Shenzhen Hepalink NGN Capital		

Resverlogix Partnership

- Shenzhen Hepalink & Resverlogix announced a major licensing & milestone deal that could exceed USD \$450MM
- Largest single molecule deal in China history
- Apabetalone targets 140 MM China diabetes & CKD patients
- The market is 10% of the population and growing at 15% per year

Market Opportunity

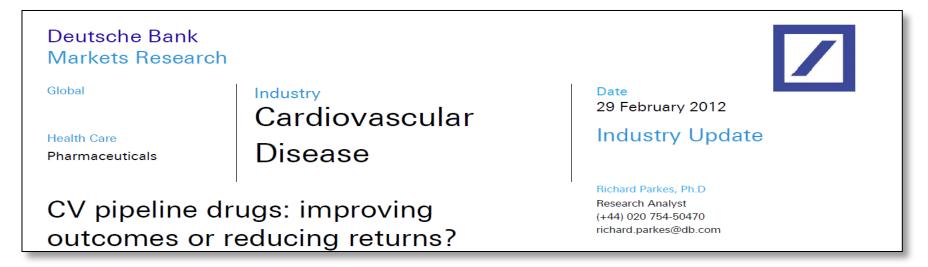

Unmet Need Segment is Still 70%

RESVERLOGIX

 Cardiovascular disease is still the number one killer of both males and females and costs the US healthcare system over \$500B per year

Opportunity

 Huge market potential resides in the remaining 70% unmet need in CVD management


Current CVD Therapies

- Statins are the top
 medication used to treat
 CVD
- Despite maximized use, current therapies only manage about 30% of CVD events

New LDL Modulators

 Several new types of LDL modulators are in clinic.
 Leading are the very expensive PCSK9's

The Opportunity: Residual Risk in CVD Pipeline Value

- Deutsche Bank estimates CVD Residual Risk Market worth \$90B
- Strong pipeline value attributed for Phase 3 residual risk assets
 - \$13B Pipeline Value for Torcetrapib (2006) Failed Phase 3
 - **\$8B Pipeline Value** for Dalcetrapib (2012) Failed Phase 3
 - \$10B Pipeline Value for Daralpadib (2014) Failed Phase 3
 - \$8B Pipeline Value for Evacetrapib (2015) Failed Phase 3

Sources: Lehman Brothers - PharmaPipelines. 2007; Deutsche Bank - Cardiovascular Disease Industry Update. 2012

RESVERIOG

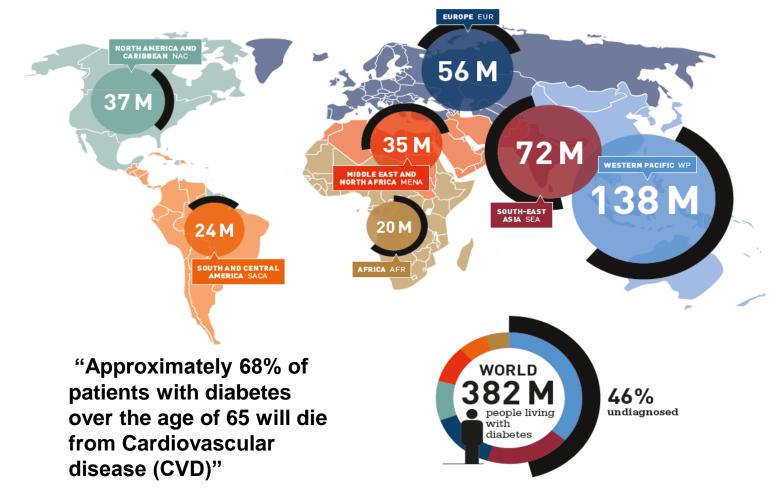
Phase 3: ACS with diabetes / low HDL – Peak Market 3,600,000

Phase 3 Sub Group: CKD pre-dialysis – Peak Market 4,500,000

Phase 2 Dialysis – Target Patient Market - Peak Market 1,300,000

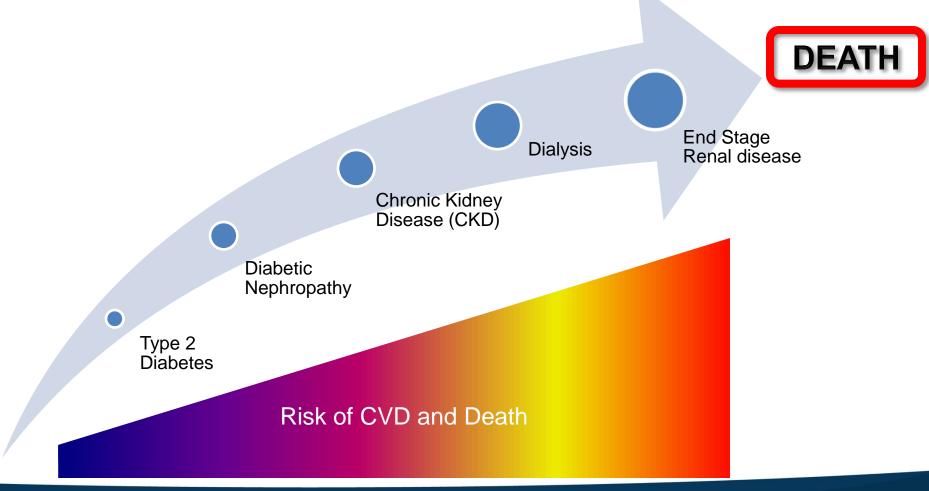
Phase 3 Sub Group AD/MCI Diabetics – Peak Market 1,300,000

Phase 2 Orphan FSHD*/DMD/IgA Nephro – Peak Market 300,000+


Total Target High Risk Market opportunity: 10++ Million patients top 7 markets

*FSHD market size outside of US only.

70% Unmet Need in CVD Management: A Growing Problem - Diabetes

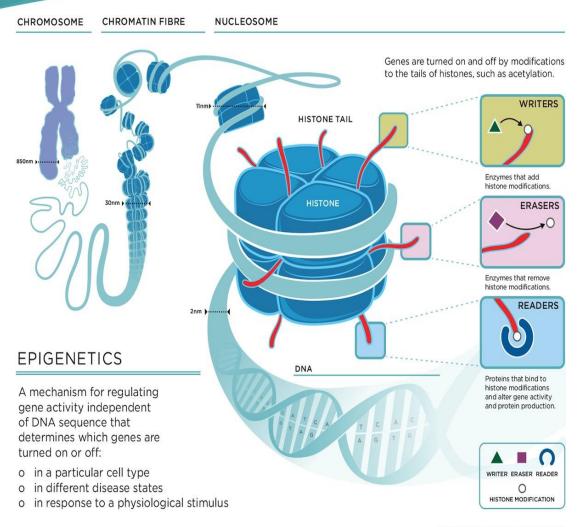


IDF Diabetes Atlas | Sixth edition

70% Unmet Need: Chronic Kidney Disease (CKD)

Type 2 diabetes patients have an increased risk for kidney risk and CVD events

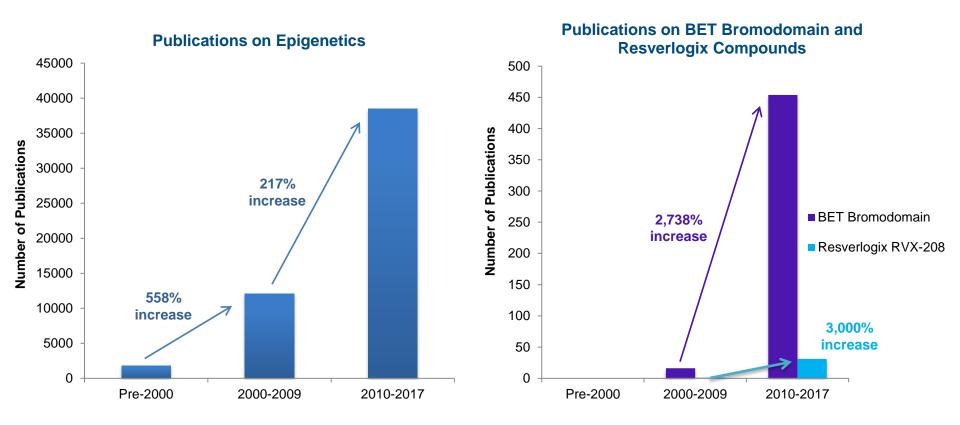
RESVERLOGI



BET Inhibition Technology

- CVD and CKD are multifactorial diseases driven by dysregulated genes and pathways, such as inflammation and calcification
- BET proteins (epigenetic readers) regulate the genes and pathways underlying this pathology
- Apabetalone inhibits BET proteins selectively and is the only clinical candidate in a phase 3 CVD outcome trial in high risk diabetes and CKD patients

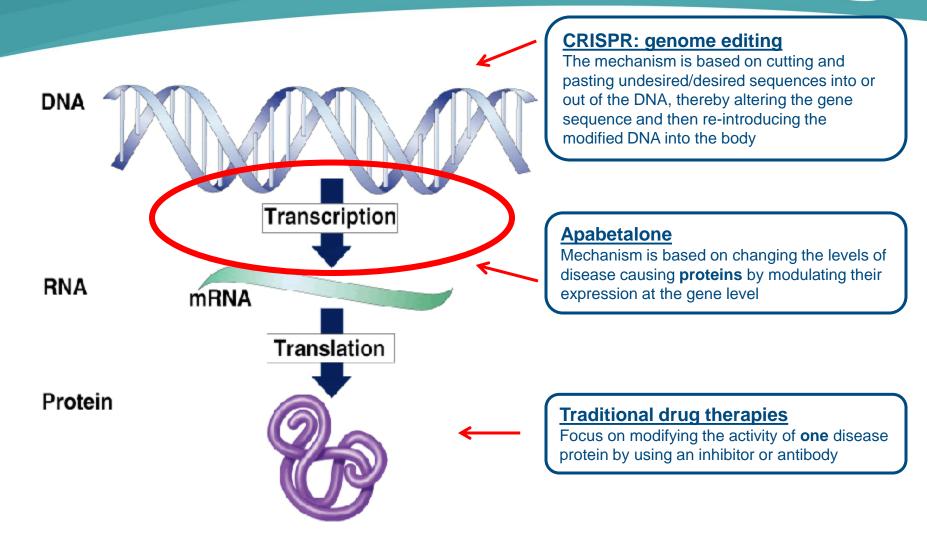
Epigenetics

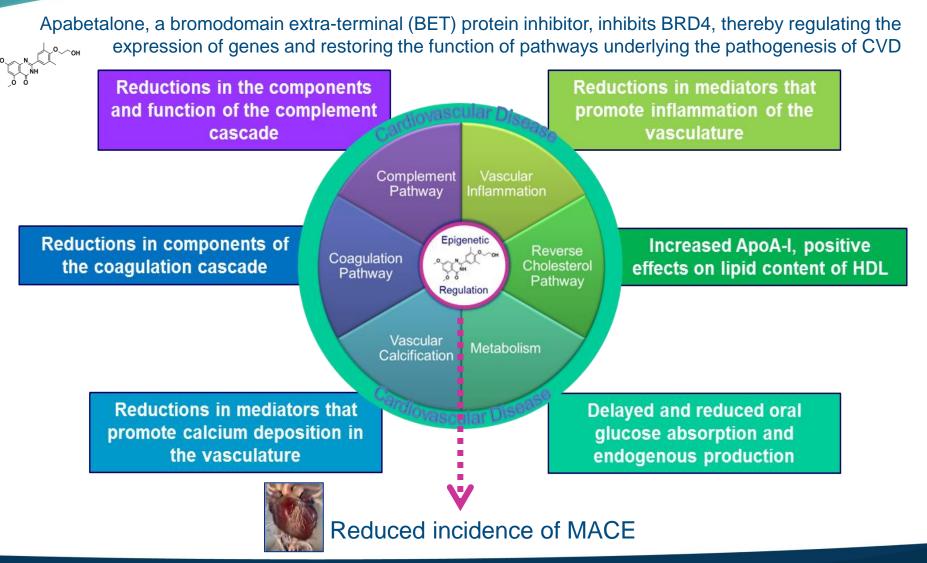


- The Epigenetic code refers to secondary modifications to chromatin components that regulate its activity
- Transcription is regulated by addition, removal or recognition of these modifications (writers, erasers, readers)
- Acetylation is associated with active transcriptional regions of chromatin
- BET (Bromodomain and Extraterminal Domain) proteins bind to acetylated lysines on histones and recruit additional transcription factors

COPYRIGHT © 2012 - RICHARD E. BALLERMANN

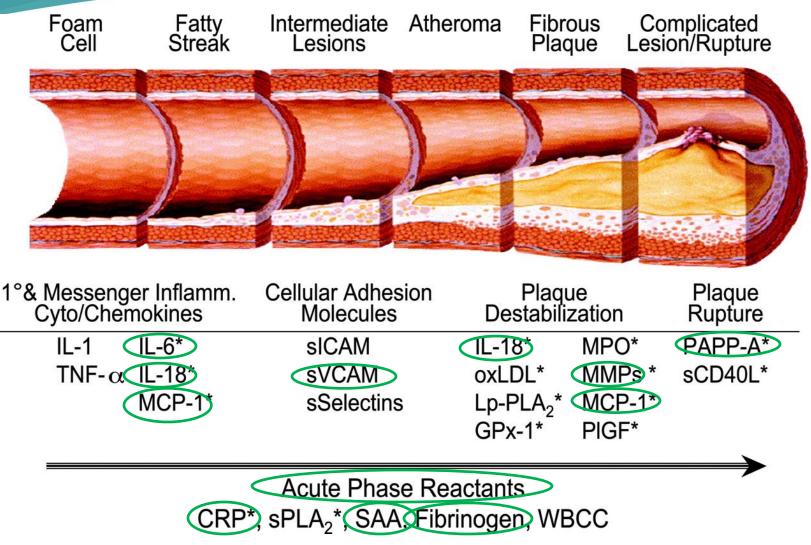
Dramatic growth of publications over the past decade in Epigenetics and BET Inhibition

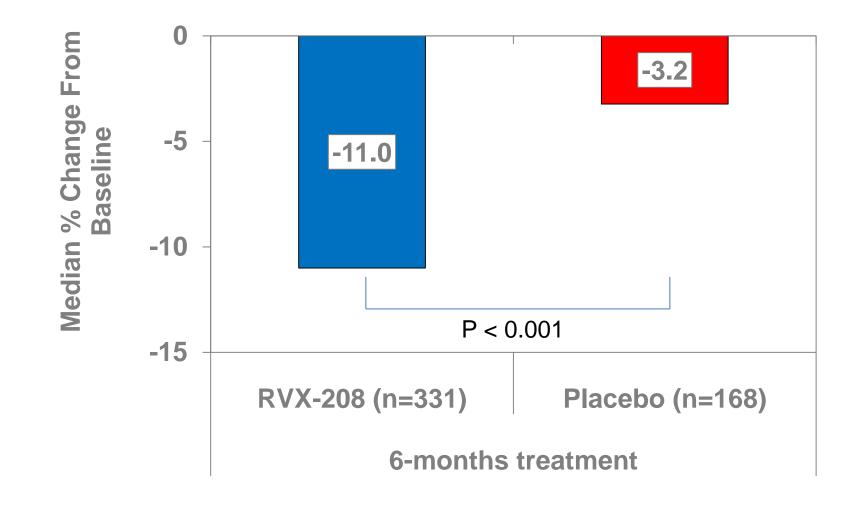



Source: PubMed Database: Historical Review Q1 2017

RESVERLOG

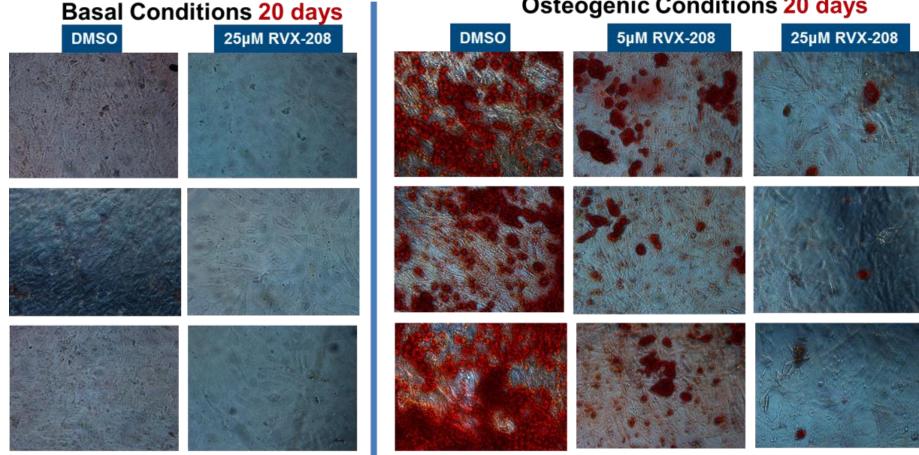
Apabetalone Unique Mechanism




Apabetalone Reduces Inflammation Key Driver of CVD Risk

Source: Koenig, W. and Khuseyinova, N. (2007). "Biomarkers of Atherosclerotic Plaque Instability and Rupture." Arterioscler Thromb Vasc Biol; 27: 15-26

Apabetalone Improves Calcification Markers ALP Reduction Impact

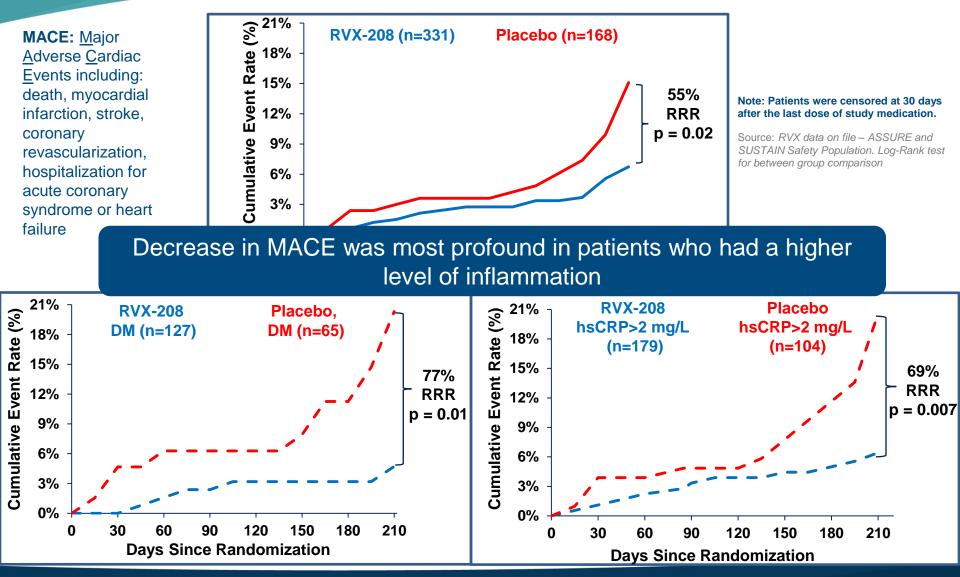

RESVERLOGIX

Strong independent literature on link between ALP and CKD outcomes and mortality Large population studies demonstrating link between ALP and CKD

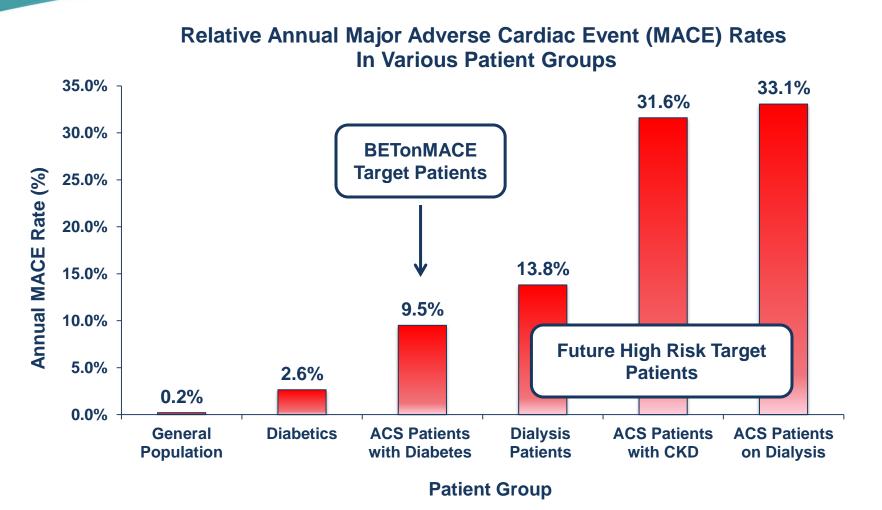
CLINICAL EPIDEMIOLOGY www.jasn.org			AJKD			
	Serum Alkaline Phosphatase P Maintenance Hemodialysis Pat Deborah L. Regidor,* Csaba P. Kovesdy,† Rajnish I Janie Fort Choice I Mattine Durit Von We Control Predictability of s pre-dialysis CKD	ients	Original Inve Pro with	gnostic Importance of Stages 3-4 Jonathan J. Taliercio, DO, ¹ Je Susana Arrigain, MA, ² Joseph V. Nally Jr, MD, ^{1,4}	f Serum Alkaline Phosphatase in CKD in a Clinical Population asse D. Schold, PhD, ^{1,2} James F. Simon, MD, ¹ Anne Tang, MS, ² Georges Saab, MD, ³ and Sankar D. Navaneethan, MD, MPH ^{1,4}	
	Csaba P. Kovesdy ^{1,2} , Vitalie Ureche ³ , Ju		Serum Alkaline Mortality and H	Phosphatase and Phosphate and Risk of lospitalization		
	¹ Division of Nephrology, Salem Veterans Affar Charlottesville, VA, USA, ³ Department of Me USA, ⁵ Harold Simmons Center for Chronic Di UCLA Medical Center, Torrance, CA, USA a <i>Correspondence and offprint requests to</i> : Csal	Life Science Journal, 2011;8(4) Bone Specific Alkaline Phosphatase and Cardiovas Hemodi	scular Morbidity among P ialysis		[†] Paul Muntner, [†] Maria Coco,* William Southern,* Irwin Lotwin,* and Michal L. Melamed* dicine, Montefiore Medical Center, Bronx, New York; and [†] University of Alabama at abama	
Γ		Emam Waked ¹ , Faten El Shanawani ² , Manar Raafat Anna Hoda Ab Nephrology ¹ , Clinical chemistry ² , Intensive care ³ and Envirc Institute, Gi	u taleb ⁴ onment research ⁴ , Departments		original article	
	Americans with Chronic Srinivasan Beddhu,* [†] Xiulian Ma	atase and Mortality in Africa c Kidney Disease [†] Bradley Baird, [†] Alfred K. Cheung, ^{*†} and T System, Salt Lake City, Utah; and [†] Department of Medi	Гom Greene*⁺	patients are hospitalization	he phosphatase levels in hemodialysis e associated with higher risk of ion and death Ronald L. Pisoni ¹ , Jennifer L. Bragg-Gresham ¹ , Juergen Bommer ² , Luis Piera ³ , kiba ⁵ , Marcia L. Keen ⁶ , Eric W. Young ^{1,7} and Friedrich K. Port ¹	
5	and the city, can			¹ Arbor Research Collaborative a ³ Hospital General Vall d'Hebror	for Health, Ann Arbor, Michigan, USA; ² Dialysis Center, University of Heidelberg, Heidelberg, Germany; n, Barcelona, Spain; ⁴ School of Medicine, Tokai University, Kanagawa, Japan; ² Division of Blood yo Women's Medical University, Tokyo, Japan; ⁶ Amgen, Thousand Oaks, California, USA and	

Apabetalone Reduces Expression of Calcification - Key Driver of CVD Risk

Osteogenic Conditions 20 days


RESVERLOGI

RESVERLOGIX.com


Apabetalone Clinical Results: MACE

Clinical Results: Efficient MACE Reduction

RESVERLOGI

Sources: Calculated from CDC Heat Disease Facts; Holden, SE. et al. 2015; White, WB. et al. 2013; Kim, H. et al. 2015; Cardarelli, F. et al. 2008; Okada, T. et al. 2008

World Leading Committee Members

CVD/Diabetes

Prof. Kausik K. Ray Chair Imperial College, London

Dr. Gregory G. Schwartz Member VA-Denver

Dr. Stephen Nicholls Member SAHMRI, Adelaide

Dr. Henry N. Ginsberg Member Columbia University

Dr. Peter P. Toth Member University of Illinois

Dr. Kamyar Kalantar-Zadeh Member Chair Nephrology UC Irvine

CKD/Dialysis

Dr. Kamyar Kalantar-Zadeh Chair UC Irvine Chief Nephrology

Prof. Vincent Brandenburg Member *University Hospital RWTH Aachen*

Dr. Carmine Zoccali Member *University Pisa*

Dr. Marcello Tonelli Member University of Calgary Chair Medical Research

Dr. Srinivasan Beddhu Member University of Utah

BETonMACE and BETonRENAL Clinical Update

BETonMACE Commenced November 2015

Apabetalone has already been tested in over 1,000 patients in 18 countries around the world.

RESVERLOGIX

Primary Objective

To evaluate if treatment with apabetalone as compared to placebo increases time to the first occurrence of triple MACE. Triple MACE is defined as a single composite endpoint of: 1) CV Death or 2) Non-Fatal MI or 3) Stroke.

Key Inclusion Criteria

- Type II Diabetes Mellitus
 HbA1c > 6.5% or history of diabetes medications
- CAD event 7 days 90 days prior to screening
 Myocardial infarction (MI), unstable angina or percutaneous coronary intervention
- HDL < 1.04 for males and < 1.17 for females

Primary Endpoint

Time from randomization to the first occurrence of adjudication-confirmed triple MACE defined as a single composite endpoint of: 1) CV Death or 2) Non-Fatal MI or 3) Stroke.

Secondary Endpoint

Time from randomization to the first occurrence of adjudication-confirmed MACE including:

- revascularization and unstable angina
- changes in apoA-I, apoB, LDL-C, HDL-C, and TG
- changes in HbA1c, fasting glucose, and fasting insulin
- changes in ALP and eGFR

Proteomic Analysis of CKD PK Study

Top 100 proteins from Somalogic, ranked by magnitude of effect at 12 hours post dose vs baseline, compare biomarkers of severe renally impaired patients versus healthy controls

Many key proteins known to drive CKD risk were already significant at12 hours post dose vs baseline

	_								
	1	Severe Renal Impaired				Healthy Control			
Protein/Gene		6 Hours	12 Hours	24 Hours	48 Hours	6 Hours	12 Hours	24 Hours	48 Hours
	IGTOP	40.2	57.6	43		-37.0	-66.1	12.8	12.8
hosphoglycerate mutase 1 Natelet factor 4	PGAN PF4		545	57.0			11.3		
14-3-3 protein family	YWH		-42	-53.0			25.5		
AMP-dependent protein kinase catalytic subunit alpha	PRKA		-442 -43	-42.1			21.8		
MAP kinase-activated protein kinase 2 Methionine aminopeptidase 1	MAPI META		-42.	-44			28.3 17.9		
i phosphoinositide-dependent protein kinase 1	POPIC		-42	-114			19.5		
Sukaryotic translation initiation factor 4H	SERPI EIF4H		-41.4	-38.5			11.0		
64-3-3 protein beta/alpha Yotein kinase C theta type	YWHU PRICE		-41.	-44.0			26.2		
W receptor-interacting protein	AP		-39.4	-41			25.7		
-C motif chemokine 17	CUC1 CCL17		-39.5	-43.2			15		
	CPNE STATI		-39.	-42.0			17.6		
WAP kinase-activated protein kinase 3	мари		-39.0	-42			14.6		
Tyrosine-protein kinase Tec Calcineurin	TEC PPP3C		-38.8	-41 0			22.1 17.9		
Natelet-derived growth factor subunit A femK methyltransferase family member 2	PDGF. NGAN		-38.6	-11			13.2 11.0		
Tyrosine-protein kinase Pyn	FIN		-32.2	-33.3			11.5		
bual specificity protein phosphatase 3	FER DUSP		-38.2	-41.9			22.9		
	TIMP: NMT1		-47.9	-35.7			10.3		
i-hydroxyacyi-CoA dehydrogenase type-2	HSD1		-37.7	-43			15.8		
Beceptor-type tyrosine-protein kinase FLT3 Tyrosine-protein kinase BTK	FLT3 BTK		-37.6 -37.4	-423			9.5 24.8		
	LYN SMAC		-37.3	-42.4			14.3 22.9		
orta-adrenergic receptor kinase 1	ADRE		-37.3	-42			21.2		
	RP568		-37.2	-22.2			0.3		
	SBOS THBS:		-36.6	-12.			29.2 17.4		
CDS ligand	ICOSL		-36.4	-28.0			7.8		
Veptidyl-prolyl cis-trans isomerase D Witogen-activated protein kinase B	PPID MAPI		-36.4	-112			18.9 10.0		
Amyloid beta A4 protein	APP CSK		-36.3	-35.3			16.1 20.7		
	ITGA1		-36.1	-35.7			9.3		
Rucleoside diphosphate kinase A Dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11A	NME1 PDE1		-36.1	-33.0			12.0		
	MAPI ARPP		-36.0	-33.0			9.9 12.3		
IAC beta serine/threonine-protein kinase	AKT2		-36.0	-32.4			16.4		
	PTPNI CASP:		-35.9	-35.0			1.4		
	COL2: PPIF		-15.1	-35.4			11		
Icl2-associated agonist of cell death	BAD		-35.8	-42			16.3		
phingosine kinase 1 Protein kinase C beta type (splice variant beta-II)	SPHIC PRICE		-35.7	-42			22.4 26.0		
Translationally-controlled tumor protein	TPT1 ENO1		-35.4	-11			16.2 17.6		
Inal homolog subfamily 8 member 1	DNAI		-35.4	-22.4			16.9		
Natelet-derived growth factor subunit B	PDIA3 PDGF		-35.3	-35.3			12.6		
lukaryotic translation initiation factor 4 gamma 2 facuolar protein sorting-associated protein VTA1 homolo	EIF4G (VTA1		-35.2	-110			12.3		
Altogen-activated protein kinase 14	маря		-35.1	-40			12.0		
nhibitor of growth protein 1	CSNC ING1		-34.9 -34.8	-35.2 -35.3			14.8		
	PRKA.		-34.5	-42			17.6		
Veutrophil-activating peptide 2	PP12P		-34.5	-11			25.5		
GMP-specific 3',5'-cyclic phosphodiesterase IO kDa heat shock protein, mitochondrial	PDES/ HSPD		-34.4	-38.7 -37.7			23.1		
	CHELI		-34.1	-35.9			17.1		
krogsin AS	ANXA		-34.1	-25.5			15.9		
Tyrosine-protein kinase Yes	ICAND YESI		-34.1	-37.3			19.8 4.2		
C motif chemokine 5 orting nexin-4	CCLS SNX4		-316	-34.5			26.1		
kflatoxin B1 aldehyde reductase member 2	AKR7		-31.5	-32.3			17.6		
Dickkopf-related protein 1	MAPS DEX1		-325	-111			20.5 8.0		
Dynein light chain roadblock-type 1	DYNU HSP90		-11.1	-42.			17.0		
tip90 co-chaperone Cdc37	CDC3		-33.1	-29.0			9.0		
Calcium/calmodulin-dependent protein kinase type II sub	PTPN: CAND		-33.0	-42.1			6.3 18.0		
Matelet glycoprotein VI Thrombopoletin	GP6 THPO		-32.9	-35.9			-6.3		
	IL2RG TAGU		-12.7	-37.0			11.0		
IAC alpha/beta/gamma serine/threonine-protein kinase	AKT1		-32.5	-22.6			52.9		
Voesin Proto-oncogene vav	MSN VAV1		-12.4	-25.6			-9.4		
imall ubiquitin-related modifier 3	SUMC		-32.2	-35.0			11.1		
OMM domain-containing protein 7	dMAP2 COM		-32.1	-32.8			6.2 13.9		
knphiregulin	AREG		-32.1	-31.6			15.9		

Commercial Opportunity: Health Value Market Research

THREE CRITICAL DEVELOPMENT SUCCESS FACTORS IN PLACE

INNOVATION

Resverlogix owns the worlds most advanced BRD4 epigenetics program

EFFICACY Clinical and safety data is continuing to suggest a successful program

Payor groups response for BET program positive seeking future results

BET NNT & Cost/Event Prevented Analysis Vs. comparators in their respective patient populations

Number Needed to Treat (NNT) per MACE event prevented (1 Year Kaplan Meier Estimate unless otherwise specified)

of competitive PCSK9i products

 \backslash

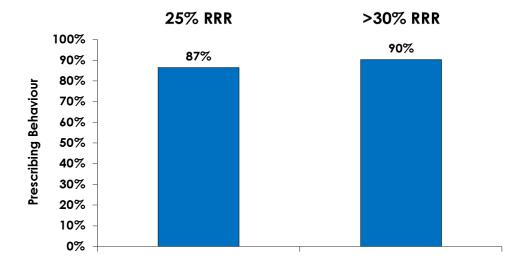
Trial	Molecule	Trial Size	Treatment Duration (Years)	Absolute NNT/Yr	Kaplan Meier (KM) NNT/Yr	Tier 2 Planned Annual Medication Cost/Patient	Annual Cost per Event Prevented (KM)
SUSTAIN/ASSURE	Apabetalone	497	0.4 – 0.5	23	22	\$2,400 - \$4,200	\$52,800 - \$92,400
ASSERT/SUSTAIN/ ASSURE		798	0.25 – 0.5	11	22	\$2,400 - \$4,200	\$52,800 - \$92,400
ODYSSEY LONG-TERM	Alirocumab	2,338	1.6	97	83	\$14,560	\$1,208,480
POOLED ODYSSEY		3,459	1.6	NA	167	\$14,560	\$2,431,520
OSLER 1-2	Evolocumab	4,465	0.9	83	81	\$14,100	\$1,142,104
IMPROVE-IT	Ezetimibe	18,144	6.0	333	250*	\$2,844	~\$711,000
EMPA-REG OUTCOMES	Empagliflozin	7,042	3.1	194	87	\$4,126	\$358,769
DEFINE	Anacetrapib	1,612	1.5	244	NA	NA	NA

Note: Medication cost based on US WAC cost (PriceRx); Kaplan Meier estimates are based on digitized curves from publications

No patient population standardization has been applied so additional population specific factors beyond severity can also influence NNT values

*1 year showed no benefit to calculate NNT; estimated by taking 5 year KM rate of 50 x 5 years

Price Band Research Report: Payer KOL Outreach


Organization	MACE Reduction: Lives Covered Unmet need in Recent ACS and T2DM patients		MACE Reduction: Unmet need in CKD patients	ICER Threshold per annum
Payer 1	Payer 1 55 M Moderate to High		Moderate to High	\$ < 100,000
Payer 2 65 M		Moderate to High	Moderate to High Moderate to High	
Payer 3	Payer 3 37 M Mode		Moderate to High	\$ < 100,000
Payer 4	40 M	Moderate to High	Moderate to High	\$ < 150,000
Payer 5 11 M		Moderate to High	Moderate to High	\$ < 150,000

- 5 Payers 208 million lives covered, Key C Suite executives contacts President, Chief Medical Directors, COO, Executive VP Pharmacy
- Pricing bands support average ICER Target Threshold of approximately \$140,000 USD
- Pricing bands support potential price of **\$6,000 \$12,000** based on new enriched high risk patients

Prescribing Behaviour: Physician Survey Findings

 Based on responses from 1,920 primary care physicians (n=625), cardiologists (n=550), endocrinologists (n=420) and nephrologists (n=325)

If select BET inhibition in a large phase III prospective setting illustrates significant relative risk reduction of MACE, on top of standard of care, in diabetes patients with low HDL and an ACS comorbidity, what would your level of interest be in prescribing this drug for the following risk reductions?

New Expanded Global SERMO Market Outreach Program Underway

RESVERI OG

- Phase 3 Company focused on significant unmet need in <u>high-risk CVD</u> patient population with novel BET therapeutic - apabetalone
- Scarcity & Health Proposition Value highly differentiated MOA first and only in class small molecule 9 year lead. Strong reimbursement positioning. IP until 2034
- Market potential targeting high-risk patient groups 10MM in top 7 markets
- Indication Expansion of apabetalone in high-risk (dialysis) CKD patients

 Phase 2 clinical trials to commence in early 2017
- Safety profile to date, <u>over 1,200 patients</u> treated with no significant safety issues

ESVERI OC