

Targeting the genetic and immunological drivers of cancer

Corporate Overview Presentation September 2021

Safe Harbor Statement

This presentation contains certain forward-looking statements regarding the business of Mirati Therapeutics, Inc. ("Mirati"). Any statement describing Mirati's goals, expectations, financial or other projections, intentions or beliefs, development plans and the commercial potential of Mirati's drug development pipeline, including without limitation adagrasib (MRTX849), sitravatinib, MRTX1133 and MRTX1719 is a forward-looking statement and should be considered an at-risk statement. Such statements are subject to risks and uncertainties, particularly those challenges inherent in the process of discovering, developing and commercialization of new drug products that are safe and effective for use as human therapeutics, and in the endeavor of building a business around such drugs.

Mirati's forward-looking statements also involve assumptions that, if they never materialize or prove correct, could cause its results to differ materially from those expressed or implied by such forward-looking statements. Although Mirati's forward-looking statements reflect the good faith judgment of its management, these statements are based only on facts and factors currently known by Mirati. As a result, you are cautioned not to rely on these forward-looking statements. These and other risks concerning Mirati's programs are described in additional detail in Mirati's quarterly reports on Form 10-Q and annual reports on Form 10-K, which are on file with the U.S. Securities and Exchange Commission (the "SEC") available at the SEC's Internet site (www.sec.gov). Mirati assumes no obligation to update the forward-looking statements, or to update the reasons why actual results could differ from those projected in the forward-looking statements, except as required by law.

Developing Novel Oncology Therapies, Including Two Registration-Enabling Programs in Large NSCLC Patient Populations

IO Resistance

Sitravatinib Inhibitor of TAM and VEGFR2

Others

NSCLC

Compelling P2 data in combination with a PD-1 support and inform SAPPHIRE P3 approach in NSCLC

KRAS Selective Inhibition

Adagrasib (MRTX849) **G12C** selective inhibitor

Others

NSCLC

CRC

Compelling efficacy and favorable tolerability with broad development in both monotherapy and combinations

G12D selective (MRTX1133) and pan-KRAS selective inhibitors

Others

Pancreatic

CRC

Potential first-in-class G12D inhibitor advancing in IND-enabling studies

Synthetic Lethality

MRTX1719 MTA Cooperative PRMT5 Inhibitor

Others

NSCLC

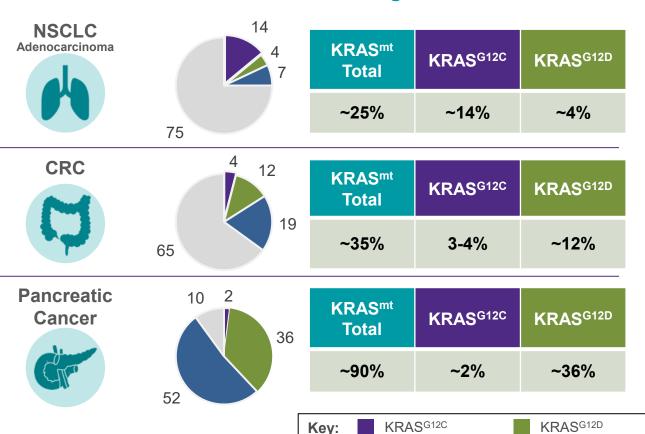
Pancreatic & Bladder

Internally discovered synthetic lethal PRMT5/MTA cooperative program for MTAP-deleted cancers with IND submission by year end

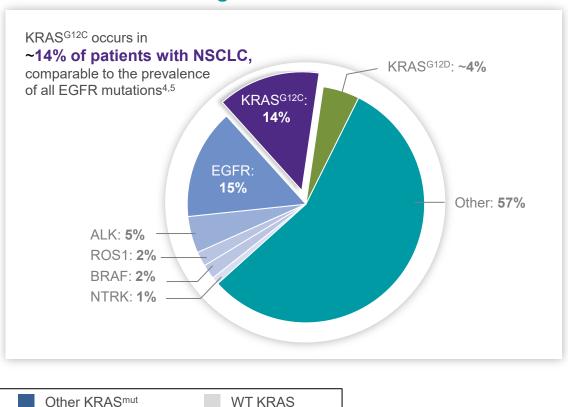
Operational and commercial synergies across portfolio, particularly in NSCLC

Advancing targeted novel oncology research platform: KRAS mutant inhibition and KRAS signaling modifiers (e.g., SOS1)

\$1.2 billion in cash, cash equivalents and short-term investments as of 6/30/21


Mirati's Pipeline Spans Multiple Novel Oncology Programs and Tumor Types

		-			0,5			<u> </u>	
Compound	Indication	Development Approach	Lead Optimization	IND- enabling	Phase 1/1b	Phase 2	Phase 3	Status / Near-Term Catalysts	
			K-1: P2 regis	tration-enab	oling			NDA filing in Q4:2021	
		Monotherapy			al, randomized	vs. docetaxel		P2 NSCLC data at medical meeting in early 2022	
	2L NSCLC	POC Combos: SHP2, SOS1, CDK4/6, Pan-EGFR, EGFR	Multiple: POC					 POC combos ongoing; pan-EGFR planned Data from select combos expected in 1H:2022 	
Adagrasib KRAS G12C Inhibitor	1L NSCLC	Monotherapy: STK11 co-mutations and TPS <1%	K-1: STK11 c					STK11 cohort initiated Q1:2021 TPS <1% to initiate Q4 2021	
	. 2 11 0 0 2 0	Combo: Pembrolizumab (PD-1)	K-7 (2 Arms):	: <1% TPS a	nd ≥1% TPS			 P2 enrollment on-going Initial K-1 tolerability update in Q4:2021 	
	2L CRC	Combo: Cetuximab (EGFR)	K-10: combin	ation with c	etuximab vs. FC	DLFIRI or FOLFO	OX	P3 initiated in 1H:2021	
	3L+ CRC and Pancreatic	Monotherapy Combo: Cetuximab (EGFR)	K-1: P1b and K-1: P1b and					 CRC; Additional P2 EGFR combo cohort to initiate Q4:2021 Pancreatic: POC P2 mono data in Q4:2021 	
MRTX1133 KRAS G12D Inhibitor	Pancreatic, CRC, NSCLC	Monotherapy and combination						• IND in 2022	
Sitravatinib <i>Multi Kina</i> se	2/3L NS-NSCLC	PD-1	SAPPHIRE -	Combinatio	n with <i>Nivoluma</i>	b vs. docetaxel		P3 interim analysis of OS in 2H:2022	
Inhibitor	2/3L S + NS-NSCLC	PD-1	Tislelizumab	Combinatio	ns (BeiGene) ⁽¹⁾			P3 initiated Q3:2021 by BeiGene	
MRTX1719 MTA cooperative PRMT5 Inhibitor	MTAP-deleted Cancers	Monotherapy						• IND by YE 2021	
Additional	Solid Tumors	SOS1 Inhibitor							
KRAS pathway preclinical programs	Solid Tumors	Other KRAS mutations							



Mirati: Deep Commitment to Addressing Cancers With High Unmet Needs *KRAS: Drugging the Undruggable*

KRAS Prevalence in Tumors With High Unmet Needs¹⁻³

Prevalence of Oncogenic Mutations in Lung Adenocarcinoma⁴

- KRAS mutations are generally associated with poor prognosis
- The absence of known binding pockets made KRAS historically undruggable; discovery of the switch II binding pocket by Shokat et al has changed this

^{1.} Zehir A, et al. Nat Med. 2017;23(6)703-713. 2. Krakstad C, et al. PLoS One. 2012;7(12):e52795. 3. NIH TCGA: The Cancer Genome Atlas. February 11, 2021. https://www.cbioportal.org. 4. Biernacka A, et al. Cancer Genet. 2016;209(5):195-198. 5. Pakkala S, Ramalingam SS. JCI Insight. 2018;3(15):e120858.

Adagrasib (MRTX849): KRAS^{G12C} Selective Inhibitor

Adagrasib: Potentially Differentiated Therapy in NSCLC and CRC for Patients with KRAS^{G12C} Mutations

- Molecular profile, including CNS penetration
 - Encouraging preclinical and early clinical evidence of activity in the brain
- NSCLC: potentially best-in-class
 - 2L+ NSCLC: differentiated response rate and initial durability in heavily pretreated patients
- CRC: potentially first-in-class and best-in-class
 - 3L+: Response rate and initial durability in heavily pretreated patients
 - Both in monotherapy and in combination with cetuximab
 - 2L: P3 randomized trial in combination with cetuximab is ongoing

Adagrasib: Multiple Paths to Potential Commercialization

Tumor Type	KRAS ^{G12C} Patient Population	Development Approach	Development Status
NSCLC	2 nd line and beyond	Monotherapy	 NDA filing Q4:2021 (accelerated approval) P3 confirmatory study in 2L (randomized to docetaxel) initiated Q1:2021
	1st line with STK11 co-mutation	Monotherapy	P2 initiated Q1:2021
	1 st line with TPS < 1%	Monotherapy	➤ P2 TPS <1% planned for Q4 2021
	1 st line stratified by TPS score of <1% and ≥1%	Combo: PD-1	P2 pembrolizumab combination: enrollment ongoing
	2 nd line and beyond	Combo: other	Multiple POC trials ongoing or to be initiated with SHP2, SOS1, pan-EGFR and CDK4/6
CRC	≥ 3 rd line	Monotherapy and Combination (EGFR)	Monotherapy.: P2 initiated Q2:2021; Combination: P2 planned for Q4:2021
	2 nd line	Combo: EGFR	➤ P3 cetuximab combination in 2 nd line (randomized to chemotherapy) initiated in 1H:2021

Adagrasib: Desired Properties Include Complete Inhibition of KRAS^{G12C} for Full Dosing Interval, Long Half-Life, CNS Penetrance and Dose-Dependent PK

Long Half Life

Long half-life ensures pathway maximally inhibited throughout entire dosing interval

Comprehensive target coverage combats new KRAS protein synthesis (half-life ~ 24h) and reactivation of signaling²

CNS Penetrant

Encouraging and clinically meaningful adagrasib exposure in patients

Clinical POC: heavily pre-treated NSCLC patient had 63% reduction of primary tumor and disappearance of active brain metastases

Extensive Tissue Distribution

Estimated
Human Volume
of Distribution
(>10 L/Kg³)

Maximize systemic exposure for duration of dosing

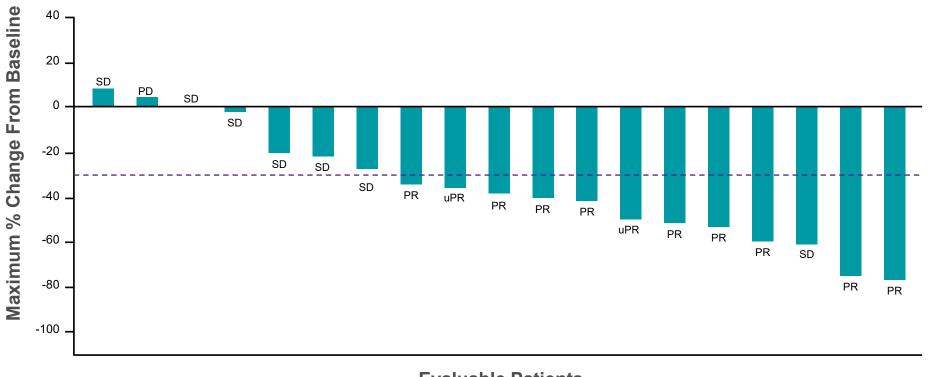
Extensive volume of tissue distribution ensures optimal target coverage throughout dosing interval

PK Profile / dosing

Dose
Dependent
PK Exposure
Response

Dose-dependent PK and emerging exposure-response relationship for adagrasib supports dose modification schema and selected combination strategies

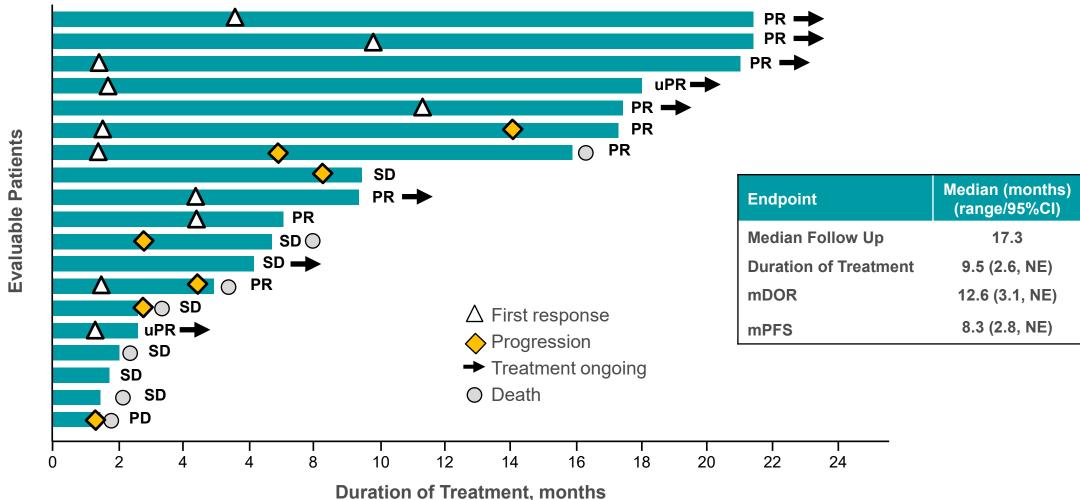
Adagrasib (MRTX849): Advanced NSCLC


Adagrasib P2 Topline NSCLC Data

- ➤ Topline results from Phase 2 cohort of KRYSTAL-1 study in 2L+ NSCLC patients with the KRAS^{G12C} mutation evaluating adagrasib at 600mg BID:
 - Intent-to-treat population
 - Data cut off: June 15, 2021
 - Median follow-up: 9 months
- > 43% ORR (confirmed based on central independent review)
 - 98.3% of patients received adagrasib following treatment with both immunotherapy and platinum chemotherapy
- Safety and tolerability profile consistent with previously reported findings for adagrasib in patients with advanced NSCLC
- NDA submission in Q4:2021

NSCLC: Phase 1/1b 2nd Line and Beyond: Best Overall Response Includes All Monotherapy Phase 1/1b 2L+ Patients Enrolled at 600mg BID (n=19)

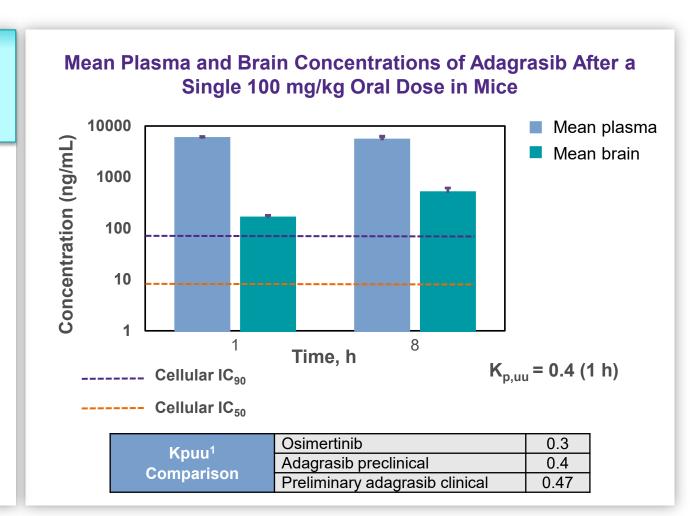
Best Tumor Change From Baseline in All Patients Treated With Adagrasib 600 mg BID (n=19)


Evaluable Patients

Heavily pretreated (median of 2 prior lines of treatment), investigator-assessed ORR of 58%, including 2 responses that occurred after being on treatment for > 10 months^a

NSCLC: Phase 1/1b in the Second Line+ Setting: Duration of Treatment

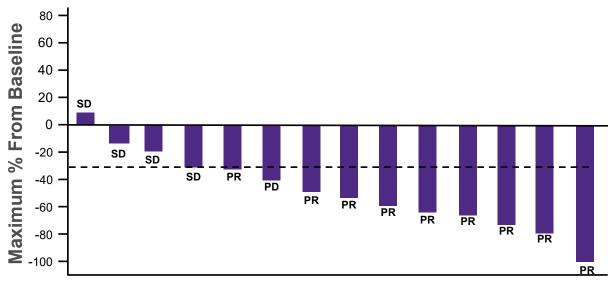
Duration of Treatment in All Patients Treated With Adagrasib 600 mg BID (n=19)



Adagrasib Clinical Activity in NSCLC Patients with Brain Metastases

Clinical activity in NSCLC patients with brain metastases with brain and CSF exposure in preclinical and clinical studies

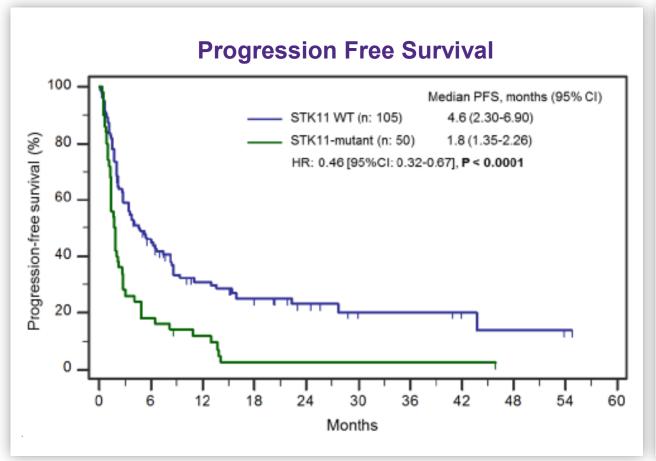
- Preclinical research demonstrates adagrasib has dose dependent drug penetration in the CNS
 - Brain concentrations >IC90 achieved with dose comparable to human dose
- Heavily pre-treated KRAS^{G12C} mutated NSCLC patient with active brain metastases was evaluated following several cycles of adagrasib therapy
 - Patient experienced 63% reduction in size of primary lung tumor and disappearance of the active brain metastases
- Enrolling cohort of patients to assess adagrasib in NSCLC patients with a G12C mutation and active brain metastases

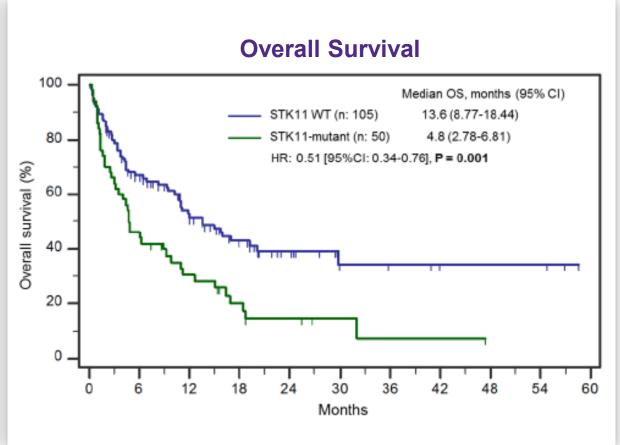

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24

Adagrasib Clinical Activity in NSCLC in Patients with KRAS^{G12C} and STK11 Co-Mutations

Co-mutations in KRAS and STK11 in NSCLC Patients

- KRAS and STK11 co-mutations comprise approximately 30% of KRAS^{G12C} mutant NSCLC
- The co-occurrence of KRAS and STK11 mutations may cooperate to create an immune-suppressed tumor microenvironment
- Initial adagrasib clinical activity shows promising response
- Potentially registration enabling Phase 2 monotherapy study in 1st line NSCLC patients with STK11 co-mutation initiated in Q1:2021


Best Tumor Change From Baseline for Patients Harboring KRAS^{G12C} and STK11 Co-mutations Shows 64% (9 of 14 patients) ORR



Evaluable Patients

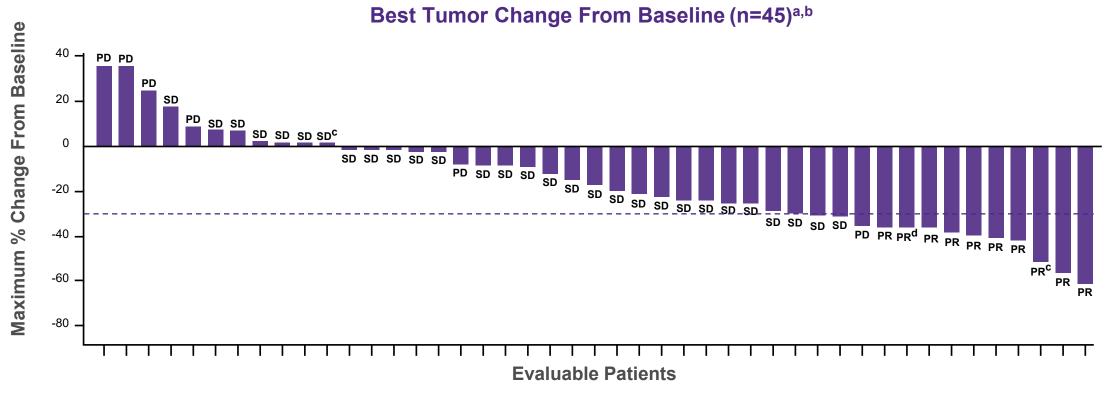
Co-mutations in KRAS and STK11 are Associated with Poor Prognosis and **Outcomes on Checkpoint Inhibitor Therapy in NSCLC**

Adagrasib (MRTX849): Heavily Pretreated CRC

Prognosis on Standard of Care in CRC with KRAS^{G12C} Mutations Have Historically Been Worse Than the Broader CRC Population

Population	Historical Efficacy Outcomes 3 rd Line and Beyond
KRAS-agnostic	 Regorafenib¹ or Trifluridine/Tipiracil²,³: – ORR: 1-2% – mPFS: 1.9-2.0 months – mOS: 6.4-8.0 months
KRAS-mutant	 Trifluridine/Tipiracil³: KRAS-mut mOS = 6.5 months

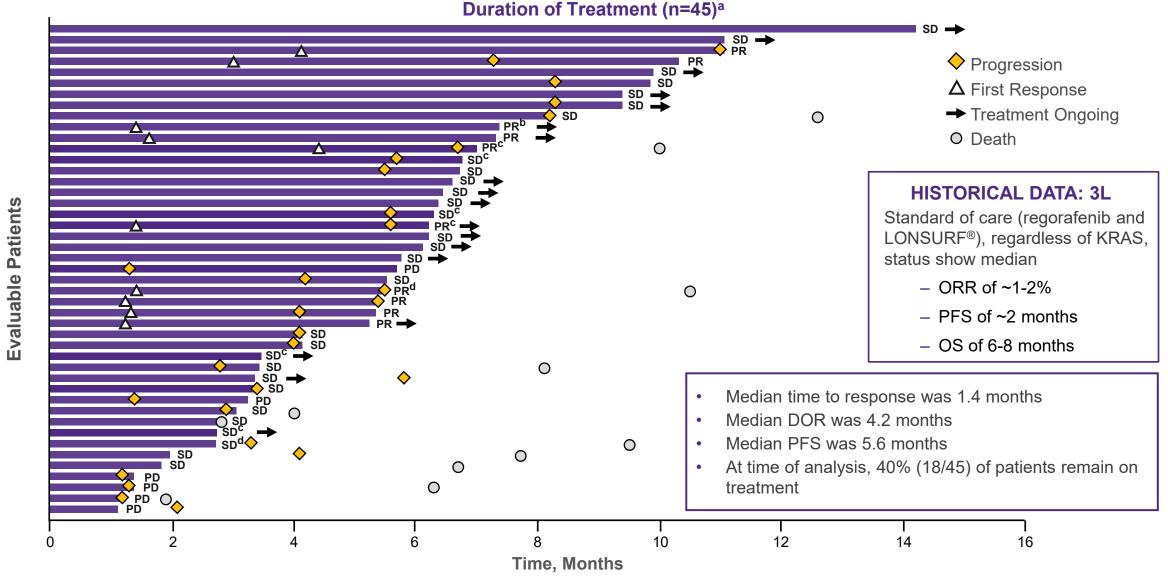
- Patient outcomes in CRC have historically been poor and progressively worse in later lines of therapy
- KRAS-mutant CRC patients tend to have worse outcomes than the broader CRC patient population


Studied CRC patients Were Heavily Pretreated; 90% of Patients in Combination Treatment Were 3rd Line or Beyond

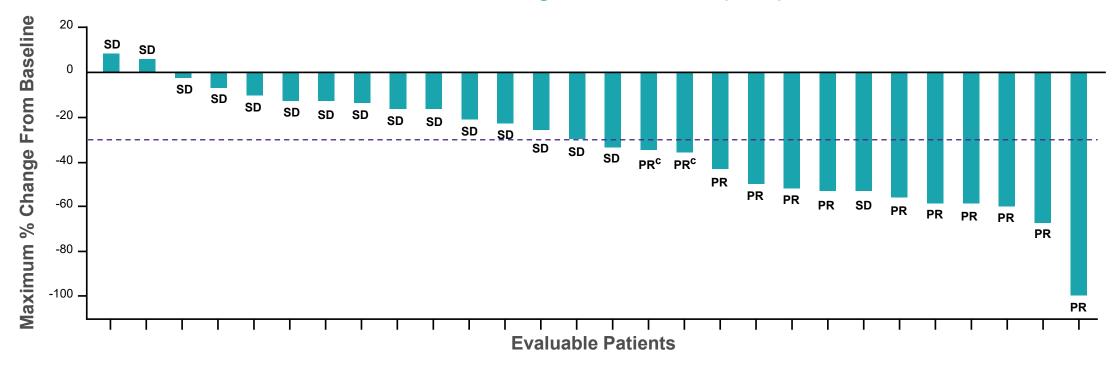
	Adagrasib Monotherapy ^a (n=46)	Adagrasib + Cetuximab ^b (n=32)
Median age, y (range)	58 (29-79)	60 (41-74)
Female, n (%)	23 (50%)	17 (53%)
Race, n (%)	,	
White	35 (76%)	26 (81%)
Black	6 (13%)	4 (13%)
Asian	3 (7%)	2 (6%)
Other	2 (4%)	0 (0%)
ECOG PS, n (%)		
0	23 (50%)	14 (44%)
1	23 (50%)	18 (56%)
Prior lines of systemic anticancer therapy, median (range)	3 (1-10)	3 (1-8)
Prior lines of systemic anticancer therapy, %		
1/2/3/≥4	20%(26%/20%/35%)	9%(25%/34%/31%)
Prior systemic anticancer therapy, %		
Fluoropyrimidine/oxaliplatin/irinotecan	100 <u>%/98%</u> /80%	100%/100%/88%
Anti-VEGF	83%	84%
Anti-EGFR biological therapy	2%	0%
Regorafenib and/or trifluridine/tipiracil	22%	19%
Molecular status, n (%) ^c		
BRAF V600E	0/44 (0%)	0/30 (0%)
MSI-H or dMMR	1/35 (3%)	0/19 (0%)
EGFR amplification	1/35 (3%)	1/28 (4%)
TP53	23/34 (68%)	18/26 (69%)
PIK3CA	5/36 (14%)	3/26 (12%)

^aAdagrasib monotherapy was administered at a dose of 600 mg BID. ^bAdagrasib was administered at a dose of 600 mg BID. Cetuximab was administered IV at a dose of 400 mg/m² followed by 250 mg/m² QW, or 500 mg/m² Q2W (Phase 1b). ^cMolecular status includes patients with conclusively evaluable test results. Data as of 25 May 2021 for monotherapy (median follow-up: 8.9 months). Data as of 9 July 2021 for the cetuximab combination (median follow-up: 7 months).

Presented at the European Society for Medical Oncology (ESMO) Congress, 19 September 2021

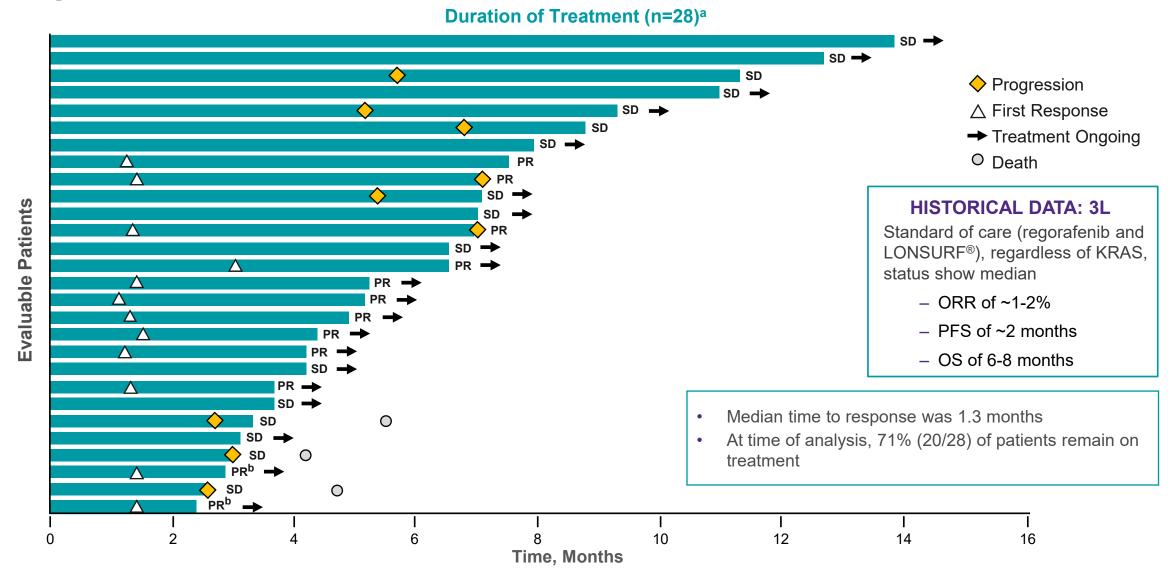

Adagrasib Monotherapy in Patients With Advanced CRC: Best Overall Response

- No apparent association between response rate and molecular status was shown in an exploratory analysis
- Response rate was 22% (10/45), including 1 unconfirmed PR (unconfirmed response remains unconfirmed)^e
- SD was observed in 64% (29/45) of patients^e
- Clinical benefit (DCR) was observed in 87% (39/45) of patients^e


^aAll results are based on investigator assessments. ^bEfficacy evaluable population (n=45) excludes 1 patient who withdrew consent prior to the first scan. ^cPhase 1/1b. ^dAt the time of the 25 May 2021 data cutoff, the patient had uPR, After a follow-up scan after the data cut off, this response still remains unconfirmed, and the patient is still on therapy and will be evaluated with the next scan. ^cAmong all enrolled Phase 1/2 monotherapy patients (n=46), ORR was 22% (10/46). Data as of 25 May 2021 for monotherapy (median follow-up: 8.9 months).

Adagrasib Monotherapy in Patients With Advanced CRC: Duration of Treatment

Adagrasib + Cetuximab in Patients with Advanced CRC: Best Overall Response


Best Tumor Change From Baseline (n=28)^{a,b}

- Response rate was 43% (12/28), including 2 unconfirmed PRs^c
 - Confirmed ORR of 39% (11/28) in the efficacy eligible and heavily pretreated population
- SD was observed in 57% (16/28) of patients
- Clinical benefit (DCR) was observed in 100% (28/28) of patients

^aAll results are based on investigator assessments. ^b Evaluable population (n=28) excludes 4 patients who withdrew consent prior to the first scan (1 withdrew due to unrelated pneumonia, 2 withdrew related to cetuximab, and 1 withdrew related to mailese from both cetuximab and adagrasib); ^cAt the time of the 9 July 2021 data cutoff, 2 patients had uPRs (1 patient subsequently confirmed and 1 patient subsequently had progressive disease). ^dAmong all enrolled Phase 1b combination patients (n=32). Data as of 9 July 2021 (median follow-up: 7 months).

Adagrasib + Cetuximab in Patients with Advanced CRC: Duration of Treatment

^aAll results are based on investigator assessments. ^bAt the time of the 9 July 2021 data cutoff, 2 patients had uPRs. Data as of 9 July 2021 (median follow-up: 7 months).

Adagrasib +/- Cetuximab in Patients With Advanced CRC: Treatment-Related Adverse Events

Most Frequent TRAEs	Adagrasib Monotherapy ^a (n=46)		Adagrasib + Cetuximab ^b (n=32)	
TRAEs,c,d %	Any Grade	Grades 3-4	Any Grade	Grades 3-4
Any TRAEs	91%	30%	100%	16%
Most frequent TRAEs, %				
Diarrhea	63%	7%	56%	3%
Nausea	57%	0%	63%	0%
Fatigue	46%	4%	47%	0%
Vomiting	46%	0%	50%	0%
Decreased appetite	15%	0%	16%	0%
Peripheral edema	15%	0%	19%	0%
AST increase	13%	4%	6%	0%
QT prolongation	13%	2%	16%	3%
ALT increase	11%	4%	13%	0%
Anemia	11%	2%	9%	0%
Dermatitis acneiform	0%	0%	44%	3%
Rash maculopapular	2%	0%	22%	0%
Infusion-related reaction	NA	NA	19%	3%

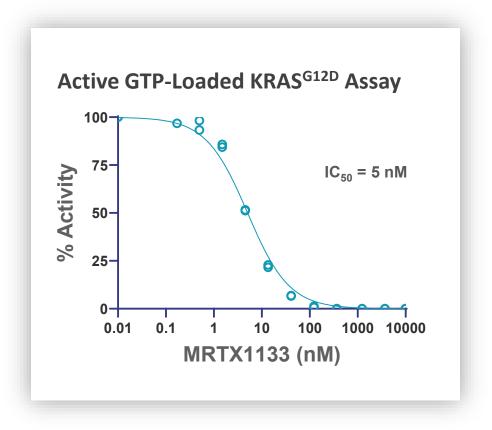
Adagrasib Monotherapy

- No Grade 5 TRAEs
- No TRAEs that led to discontinuation

Adagrasib + Cetuximab Combination

- No Grade 5 TRAEs
- 6% (n=2) of TRAEs led to discontinuation of treatment^e

^aAdagrasib monotherapy was administered at a dose of 600 mg BID. ^bAdagrasib was administered at a dose of 600 mg BID + cetuximab was administered IV at a dose of 400 mg/m² followed by 250 mg/m² QW, or 500 mg/m² Q2W. ^cOccurred in ≥10% of patients treated with adagrasib monotherapy and select TRAEs of interest in patients treated with adagrasib + cetuximab combination. ^dIncludes events reported between the first dose and 25 May 2021 for adagrasib monotherapy (median follow-up: 8.9 months). Includes events reported between the first dose and 9 July 2021 for adagrasib + cetuximab combination (median follow-up: 7 months). ^eTRAEs leading to discontinuation were grade 2 treatment-related malaise and grade 2 cetuximab-related infusion-related reaction.



MRTX1133:

KRAS^{G12D} Selective Inhibitor

MRTX1133: Potential First-in-Class KRAS^{G12D} Selective Inhibitor

Assay	Criteria	MRTX1133
KRAS ^{G12D} cell activity	<10nM	~5 nM
Selectivity over KRASWT	>100-fold	>1,000-fold
Predicted human half-life	>24 hours	~50 hours
Low risk for hERG/off-target pharmacology	>10µM	✓
Drug-drug interaction (CYPs)	Low risk	✓

- MRTX1133 is a small molecule that selectively & reversibly binds to & inhibits KRAS^{G12D} in both active & inactive states
- MRTX1133 demonstrates selective inhibition of cell viability of KRAS^{G12D} mutant, but not KRAS wild-type, tumor cells

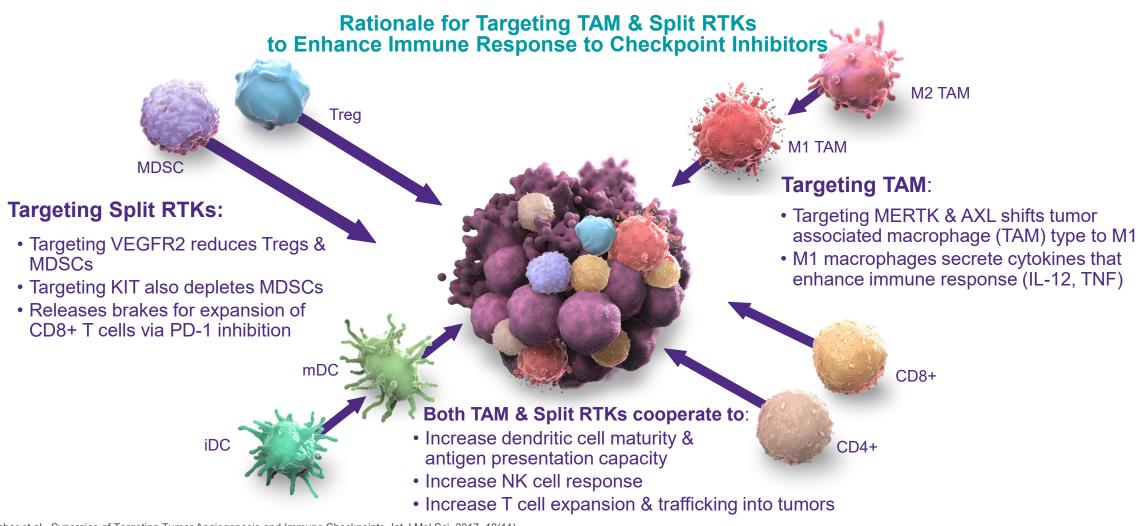
MRTX1133: Clinical Development Path and Design Principles

PATH TO CLINICAL DEVELOPMENT

- Optimizing target coverage throughout the dosing interval is important for maximizing antitumor activity in KRAS mutated cancers
- To ensure sustained therapeutic levels are achieved, evaluation is ongoing of drug delivery platforms, including long-acting IV injectables
- IV injectable route of administration commercially attractive and compatible with development as a monotherapy or in combination with standard of care regimens
- ➤ IND filing planned for 2022

CLINICAL TRIAL DESIGN PRINCIPLES

- Multi-cohort Phase 1 monotherapy trial comparable to adagrasib
 - Rapid dose escalation strategies to define a tolerated and active dose
- Multiple expansion cohorts for pancreatic, colon,
 lung and other G12D patients
- Rational combination approaches are similar to G12C and enabled in first-in-human clinical trials



Sitravatinib + Checkpoint Inhibitors

Sitravatinib Inhibits TAM (TYRO3, AXL and MER), VEGFR2, and KIT Receptors and May Restore Immune Response

Du, W., Huang, H., Sorrelle, N., & Brekken, R. A. (2018). Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight, 3(21).

MRTX-500: Phase 2, Open-Label Study of Sitravatinib + Nivolumab in Patients with Nonsquamous NSCLC with Prior Clinical Benefit from Checkpoint Inhibitor Therapy

Key Eligibility Criteria (n=68)

- Advanced/metastatic nonsquamous NSCLC^a
- No actionable driver mutations
- Anti–PD-1/L1 must be the most recent line of therapy
- Prior Clinical Benefit (PCB) to CPI: CR, PR, or SD ≥12 weeks from prior CPI therapy
- No uncontrolled brain metastases
- ECOG PS 0-2

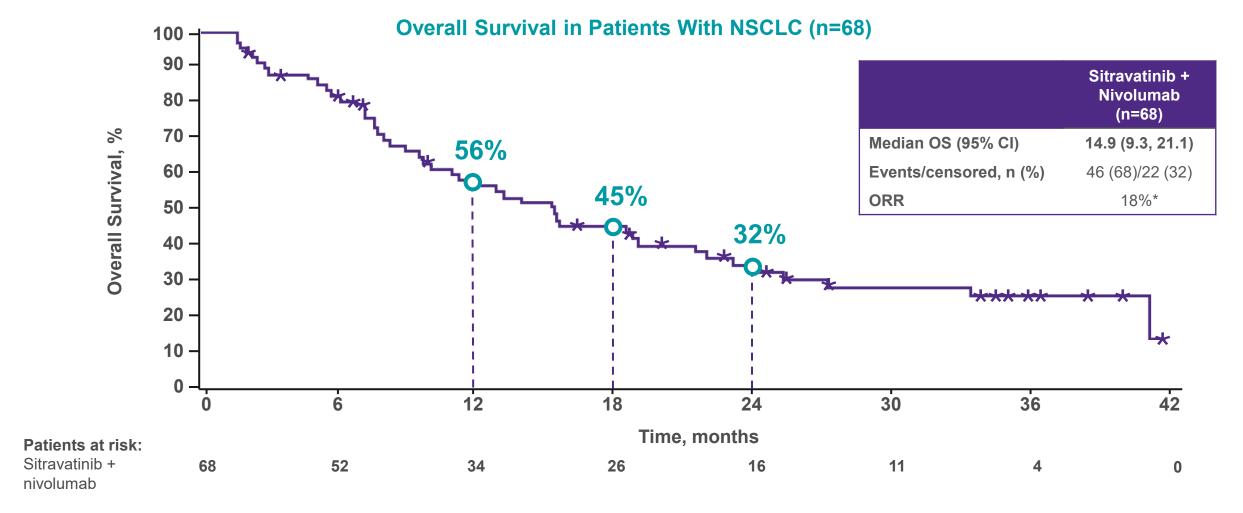
Primary Endpoint:

 Objective Response Rate^b (ORR), as defined by RECIST 1.1 **Secondary Endpoints:**

- Safety and tolerability
- DOR
- CBR

PFS

Sitravatinib 120 mg QD +

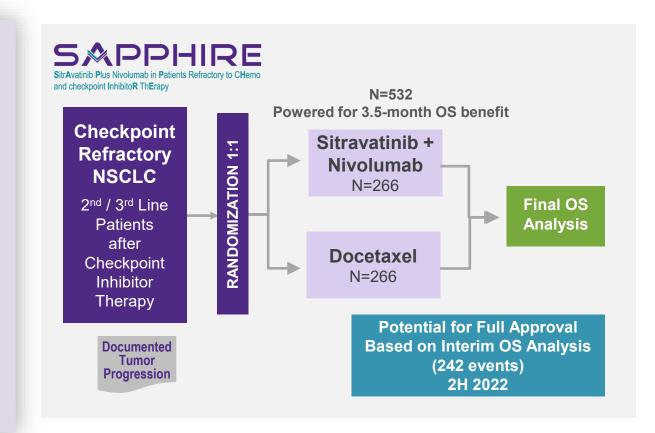

nivolumab

- OS
- 1-year survival rate

Data as of 1 June 2021

^a Additional cohorts included a CPI-experienced cohort that did not receive prior clinical benefit from CPI therapy (radiographic progression of disease ≤12 weeks after initiation of treatment with CPI) and a CPI-naive cohort in patients that were previously treated with platinum-based chemotherapy. ^bObjective response rate based on investigator assessment. Dosing: sitravatinib free base formulation; nivolumab, 240 mg Q2W or 480 mg Q4W. Treatment discontinuation could be due to (but is not limited to) disease progression, global health deterioration, AEs, protocol violation, lost to follow-up, refusal of further treatment, study termination, or death.

Overall Survival with Sitravatinib + Nivolumab in Patients with Nonsquamous NSCLC With Prior Clinical Benefit From CPI Therapy



Median follow-up in PCB cohort: 33.6 months. Data as of 1 June 2021.

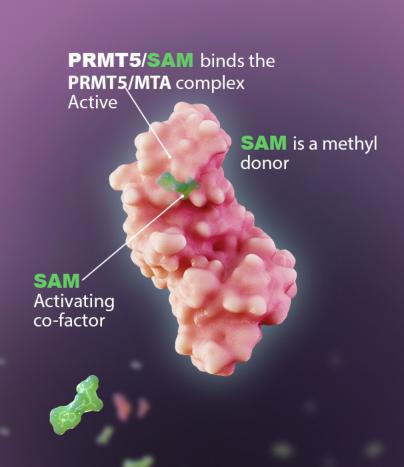
^{*} ORR of 18% included 2 complete responses (3%) and 10 partial responses (15%)

Compelling Phase 2 Results Support and Inform SAPPHIRE Phase 3 Trial in 2nd / 3rd Line Non-Squamous NSCLC

- Encouraging Overall Survival (OS) data from Phase 2 trial¹
 - Median OS of 14.9 months¹ in 2L or 3L patients with Prior Clinical Benefit (PCB) on a prior checkpoint inhibitor (CPI) and subsequent disease progression (n=68)
 - 56% and 32% of patients alive at 1- and 2-years, respectively
- Phase 3 SAPPHIRE clinical trial inclusion criteria in PCB patients who received the combination as either 2nd or 3rd line therapy after progressing on treatment with checkpoint inhibitor
- Potential to establish sitravatinib + nivolumab as new standard of care after checkpoint inhibitor failure
 - >2nd line NSCLC U.S. & EU Populations (circa 2020):
 over 100,000 patients with ~70,000 being non-squamous

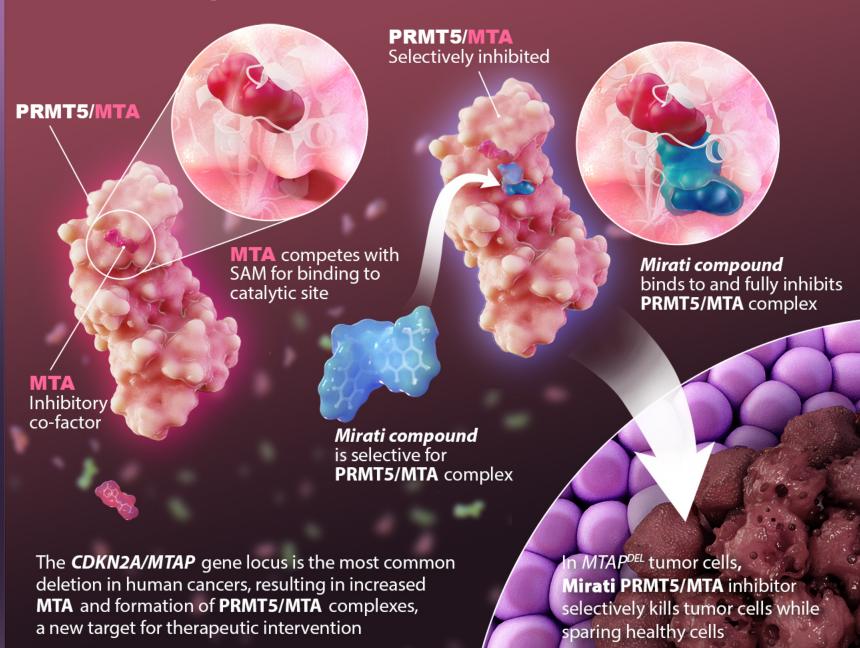
^{1.} MRTX-500 Phase 2 trial: full Prior Benefit Cohort (PCB) (n=68), data cut-off of June 1, 2021, and presented at European Society for Medical Oncology (ESMO) Congress on September 18, 2021. Patients with PCB on a checkpoint inhibitor as part of their last treatment regimen prior to enrollment. PCB is defined as either complete response, partial response or stable disease for ≥12 weeks. PCB patients who received the combination as either 2nd or 3rd line of therapy after progressing on treatment with a checkpoint inhibitor. and 1 patients were not evaluable for ORR: 8 patients without post-baseline scan, 1 patient without measurable disease at baseline, and 1 patient for whom all post-baseline scans were NE. Median follow-up in the PCB cohort was 33.6 months. OS: overall survival; NSCLC: non-small cell lung cancer

^{2.} Data represented are from the CheckMate 057,KEYNOTE 010 and OAK studies and do not reflect results that might have been obtained from head-to-head studies. Results from Mirati's on-going Phase 3 SAPPHIRE trial comparing sitravatinib + nivolumab to docetaxel may differ materially from prior studies presented.


PRMT5 Inhibitor

Potential First-in-class PRMT5 Inhibitor Selective for MTAP-deleted Cancers

- ➤ MTAP deletions occur in up to 10%¹ of all human cancers including pancreatic, lung, and bladder
 - Patients have a poor prognosis, representing a significant unmet medical need
- Internally discovered PRMT5 inhibitor represent a potential precision medicine for MTAP-deleted cancers
 - Program leverages a synthetic lethal approach and selectively targets the PRMT5/MTA complex in MTAP-deleted cancer cells
 - Designed to spare normal human cells and demonstrates improved therapeutic index in preclinical studies relative to first generation approaches
- MRTX1719 selected as clinical candidate with IND filing anticipated by year-end 2021



Mirati compound binds to PRMT5/MTA complex in MTAP-deleted tumor cells

Activated PRMT5 regulates RNA splicing, gene expression, and protein translation

PRMT5 = Protein Arginine Methyltransferase 5; SAM - S-adenosylmethionine; MTA: methylthioadenosine; MTAP: methylthioadenosine phosphorylase

MRTX1719: Potential First-in-class Selective Inhibitor of the PRMT5/MTA Complex

Assay	Criteria	MRTX1719
PRMT5/MTA <i>MTAP</i> ^{DEL} SDMA cell activity	<15nM	<10 nM
Selectivity for MTAPWT cells (SDMA)	>20-fold	>70-fold
Drug-drug interaction (CYPs)	Low risk	√
Favorable bioavailability	Low risk ADME	√

- MRTX1719 selectively inhibits the PRMT5/MTA complex with a very slow off rate and tight binding leads to prolonged PD
 effects in preclinical models
- Greater inhibition of PRMT5 in *MTAP*-deleted (tumor) cells suggest the potential for an increased therapeutic index with fewer adverse events (e.g., bone marrow suppression) compared to non-PRMT5/MTA selective inhibitors

Financial Update

Select Company Financials

NASDAQ	MRTX
Cash as of June 30, 2021*	\$1.2B
Shares outstanding as of June 30, 2021**	59.2M
Q2 2021: Operating Expenses	\$164.2M
Q2 2021: Operating Expenses net of stock-based compensation***	\$136.2M

^{*} This amount is comprised of cash, cash equivalents and short-term investments.

^{**} Shares outstanding as of June 30, 2021, includes 51.6 million shares of common stock outstanding and pre-funded warrants to purchase a total of 7.6 million shares of common stock. The pre-funded warrants have a per share exercise price of \$0.001.

^{***} Amount disclosed is calculated as Q2 2021 operating expenses (\$164.2M) less Q2 2021 stock-based compensation expense (\$28.0M).

Targeting the genetic and immunological drivers of cancer

Corporate Overview Presentation September 2021