Assessment of geographic atrophy progression in the phase 3 OAKS and DERBY trials

Allen Chiang, Sujata Sarda, Mark Burch, Min Tsuboi, Daniel Jones, and Ramiro Ribeiro
The Association for Research in Vision and Ophthalmology Annual Meeting New Orleans, USA
April 23-27, 2023

Phase 3 OAKS and DERBY trials: Design and key criteria

Patients with GA secondary to AMD
 1258 patients at 232 sites combined

Key inclusion criteria

- Age ≥ 60 years
- BCVA ≥ 24 letters ETDRS (20/320 Snellen equivalent)
- GA lesion requirements:
- Total size: ≥ 2.5 and $\leq 17.5 \mathrm{~mm}^{2}$; if multifocal, at least one focal lesion must be $\geq 1.25 \mathrm{~mm}^{2}$ (0.5 DA)
- Presence of perilesional hyperautofluorescence
- GA lesions with or without subfoveal involvement allowed

Key exclusion criteria

- GA secondary to a condition other than AMD, such as Stargardt disease, in either eye
- CNV in the study eye (active or history of), including presence of RPE tear (assessed by reading center)

Pegcetacoplan reduced GA lesion growth

MMRM analysis (primary)

LS means estimated from a mixed-effects model for repeated measures (MMRM) with fixed effects of study, treatment, time, treatment x time interaction, baseline GA lesion area strata, fellow eye CNV, and baseline GA lesion strata \times time interaction.

Piecewise linear slope analysis (post hoc)

LS means estimated from a piecewise linear mixed-effects model that evaluated mean rate of change in GA area between pegcetacoplan arms and sham arm from baseline to Month 24, with knots at Months 6,12 \& 18 allowing for the slope to be linear over each of the 6 -month segments but to differ between segments (piecewise slope analysis).

OAKS and DERBY combined

Increasing treatment effect over time

Treatment effect on GA lesion growth across subgroups

OAKS and DERBY combined

Adverse events of interest at 24 months

	EXUDATIVE AMD*
PM $(\mathrm{n}=419)$	12%
PEOM $(\mathrm{n}=420)$	7%
Sham $(\mathrm{n}=417)$	3%

INTRAOCULAR INFLAMMATION

28 cases out of 11,736 pegcetacoplan injections

0.24\% per injection

No events of occlusive vasculitis or retinitis were reported

OPTIC ISCHAEMIC NEUROPATHY			
	SAEs	AEs	Total rate
PM $(\mathrm{n}=419)$	3	4	1.7%
PEOM $(\mathrm{n}=420)$	0	1	0.2%
Sham $(\mathrm{n}=417)$	0	0	0%

- All cases were evaluated by neuro-ophthalmologists
- All patients with OIN had discs at risk and multiple systemic risk factors

Post hoc analysis of OAKS and DERBY:

Quartile analysis of GA lesion growth over 24 months

Schematic representation of progression

Is pegcetacoplan treatment associated with a shift in distribution of patients into slower progressing quartiles?

Post hoc analysis: Methods and quartile definitions

GA progression measured by change in lesion area (mm^{2}) from baseline to Month 24

- GA progression by quartiles of growth assessed in the overall patient population
- Patients needed to have a Month 24 lesion growth measurement to be included in the analysis
- Total $\mathrm{n}=1000$; 250 per quartile

Lesion growth quartiles	Growth over 2 years $\left(\mathrm{mm}^{2}\right)$
Quartile 1 slowest progressors	≤ 2.08
Quartile 2	$>2.08-\leq 3.13$
Quartile 3	$>3.13-\leq 4.53$
Quartile 4 fastest progressors	>4.53

Distribution of patients by study arm across quartiles reflects efficacy of pegcetacoplan at 24 months

PM difference vs sham in fast progressors

Q4 fast progressors

PEOM

Distribution of patients by study arm across quartiles reflects efficacy of pegcetacoplan at 24 months

OAKS and DERBY combined
OAKS and DERBY combined

PM
PEOM

Sham pooled

Example of GA lesion growth of $1.15 \mathrm{~mm}^{2}$ on FAF

FAF=fundus autofluorescence.

Amount of retina tissue preserved $\left(\mathrm{mm}^{2}\right)$ with pegcetacoplan treatment

OAKS and DERBY combined

Retinal tissue and RPE cells preserved* with pegcetacoplan

	OAKS and DERBY combined				
	Pegcetacoplan monthly ($\mathrm{n}=403$)			$\begin{aligned} & \text { Pegcetacoplan EOM } \\ & (\mathrm{n}=406) \end{aligned}$	
6-month intervals	Retinal tissue saved (mm^{2})	RPE cells saved	$\text { t } 24 \text { months }$	Retinal tissue saved (mm^{2})	RPE cells saved
0-6 months	0.14	700-1100	monthly	0.12	600-900
6-12 months	0.20	1000-1500		0.15	800-1200
12-18 months	0.19	1000-1500	CELLS SAVE at 24 months	0.16	800-1200
18-24 months	0.30	1500-2300	EO	0.26	1300-2000
Total over 24M ${ }^{\text {a }}$	0.82	4200-6300	*Estimated based on macular RPE density ${ }^{1}$ range of	0.69	3500-5300

OAKS and DERBY combined / prespecified analysis Reductions in GA lesion growth by lesion location

OAKS DERBY 24 Months

[^0]OAKS and DERBY combined
Cumulative preservation of retinal tissue in nonsubfoveal lesions

Retinal tissue and RPE cells preserved* with pegcetacoplan: Nonsubfoveal subgroup

OAKS and DERBY combined

	Pegcetacoplan monthly ($\mathrm{n}=158$)	
6-month intervals	Retinal tissue saved (mm^{2})	RPE cells saved
0-6 months	0.30	1500-2300
6-12 months	0.34	1700-2600
12-18 months	0.35	1800-2700
18-24 months	0.32	1600-2500
Total over 24Ma	1.30	6600-10,000

6600-10,000 RPE CELLS SAVED* at 24 months with pegcetacoplan	Pegcetacoplan EOM ($\mathrm{n}=155$)	
	Retinal tissue saved (mm²)	RPE cells saved
	0.24	1200-1900
	0.35	1800-2700
	0.21	1100-1600
	0.32	1600-2500
	1.11	5600-8600

Functional data by lesion distance from the foveal center

- Subgroups: $\geq 250 \mu \mathrm{~m}$ and $<250 \mu \mathrm{~m}$ from the foveal center
- Data Source: AI-based automated segmentation of RPE loss from OAKS and DERBY patients with Spectralis (Heidelberg) OCT Images ($\sim 75 \%$ total sample size)
- Model specification and baseline covariate selection were done a priori based on clinical rationale ${ }^{1,2}$: demographics, study eye characteristics (including foveal occupancy of regions 1-5), and fellow eye characteristics

BCVA is correlated with the proportion of the fovea (ETDRS regions 1-5) occupied by GA lesion

Pegcetacoplan was associated with slower vision loss and better quality of life in patients with lesions $\mathbf{\geq 2 5 0 \mu m}$ away from the foveal center

OAKS DERBY

Baseline BCVA: PEG 73 and Sham 75 (~20/32 Snellen)

BCVA change from baseline to Month 24

Overall trends in BCVA and VFQ-25 change over time were similar across treated and sham patients with lesions closer to foveal center ($<250 \mu \mathrm{~m}$)

 24 Months
Baseline BCVA: PEG 56 and Sham 55 (~20/80 Snellen)

BCVA change from baseline to Month 24

Conclusions - Subgroup analyses of functional data

- Over 24 months, in patients with lesions further from foveal center:
- Pegcetacoplan slowed vision loss versus sham (nearly 6 fewer letters lost)
- Pegcetacoplan-treated patients reported better quality of life than sham-treated patients (4 points higher)
- A VFQ-25 composite difference of 4-6 points is considered clinically meaningful in neovascular AMD ${ }^{1}$
- Limitations
- RPE-loss data was not available for patients with Cirrus (Zeiss) OCT images
- Baseline characteristics of patients with Spectralis and Cirrus OCT images were similar
- Post hoc analysis
- Pegcetacoplan is the first and only FDA-approved treatment for GA secondary to AMD
- Pegcetacoplan slows GA progression with both monthly and every other month dosing, with effects increasing over time
- Treatment benefit demonstrated across all pre-specified subgroups
- In the quartile analysis, Quartile 1 (slow progressors) had a higher proportion of patients from PM and PEOM arms versus sham. Conversely, Quartile 4 (fast progressors) had a higher proportion of sham patients than PM or PEOM
- Based on the area of retinal tissue preserved, between 3500-10,000 RPE are saved with 2 years of treatment, which corresponds with a much larger number of PR cells saved.
- Pegcetacoplan demonstrated visual function and quality of life benefits vs sham in patients with lesions further from the fovea

[^0]: LS means estimated from a mixed-effects model for repeated measures. The modified intention-to-treat population was used for the analysis, defined as all randomized patients who received at least 1 injection of pegcetacoplan or sham and have baseline and at least 1 post-baseline value of GA lesion area in the study eye

