DENALI^{**} Defeat Degeneration

June 2020

OUR PURPOSE: DEFEAT DEGENERATION

Significant unmet medical need with few disease-modifying medicines

OUR APPROACH: TWO PLATFORMS

DEGENOGENE BIOLOGY

Lysosomal function **Glial biology** Cellular homeostasis

BLOOD-BRAIN BARRIER TECHNOLOGIES

Deep biology and drug discovery expertise in three focus areas Engineering brain delivery of small molecules, biotherapeutics, and gene therapies

JENALI

4

OUR JOURNEY: CLINICAL MILESTONES AND KEY PARTNERSHIPS

STRATEGIC PARTNERSHIPS

¹Collaboration with Neurodegenerative Consortium (NDC) researchers based at MD Anderson

JENALI

OUR POR	TFOLIO	Large	e Molecule (TV Platfo	rm)	Small Molecule		AAV	
PROGRAM TARGET	DRUG CANDIDATE	DISEASE INDICATION	DRUG DEVELOPMENT					
			Drug Discovery	IND-Enabling	Early Clinical	Late Clinical	Approved	PARINER
LYSOSOMAL FUNCTI	ON PATHWAY							
LRRK2	DNL201	Parkinson's						
	DNL151	Parkinson's						
Iduronate 2-sulfatase	DNL310	MPS II (Hunter Syndrome)						
PGRN	DNL593	Frontotemporal Dementia						Takeda
Alpha-Synuclein	ATV:aSyn	Parkinson's, DLB, MSA						
Sulfamidase	ETV:SGSH	MPS IIIA (Sanfilippo Syndrome)						
Undisclosed	ETV:LF1	LSD with Neurodegeneration						
Undisclosed	AAV:LF2	Parkinson's						
GLIAL BIOLOGY PATI	HWAY							
RIPK1 (CNS)	DNL747	Alzheimer's, ALS, MS						Sanofi
TREM2	DNL919	Alzheimer's						Takeda
Undisclosed	GB1	ALS						
CELLULAR HOMEOS	TASIS							
EIF2B	DNL343	ALS, FTD						
Tau	ATV:Tau	Alzheimer's						Takeda
Undisclosed	CH1	ALS, Parkinson's						
OTHER								
RIPK1 (Peripheral)	DNL758	Peripheral Inflammatory Diseases						Sanofi
LRRK2 (Peripheral)	DNL975	Crohn's Disease						
Undisclosed	OT1	Other						

OUR 2020 CLINICAL PIPELINE DELIVERABLES

	2020 Plans	Expected Timing
LRRK2 Parkinson's	 Select molecule and prepare for Phase 2/3 	• Mid 2020
ETV:IDS Hunter syndrome	 Establish biomarker proof-of-concept in patients 	Late 2020
EIF2B ALS	 DNL343 Phase 1 in HV results to potentially enable patient study (COVID delay) 	Late 2020
RIPK1 ALS, Alzheimer's	 Results from DNL747 ALS and Alzheimer's studies to potentially enable progression 	 Mid 2020
BBB Platform	 Establish TV Platform PoC in humans (ETV:IDS) Initiate IND-enabling studies for additional programs 	Late 2020

DEUVLI

DENALI UPDATE FROM COVID-19 PANDEMIC

- Onsite and remote operations nearly at full productivity levels
- Enrollment for DNL151 (LRRK2) and DNL343 (EIF2B) clinical trials poised to restart as sites reopen
- Key 2020 clinical readouts and decisions remain on track
- Strong balance sheet with just under \$600M in cash at end of Q1 2020

TRANSPORT VEHICLE BBB PLATFORM

JENALI

THE BLOOD-BRAIN BARRIER IS AN OBSTACLE FOR TREATING **NEURODEGENERATIVE DISEASES**

uptake of biotherapeutics using the transferrin receptor (TfR)

TV TECHNOLOGY DELIVERS BIOTHERAPEUTICS TO THE BRAIN

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

BLOOD-BRAIN BARRIER

Published May 27, 2020

Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys

Mihalis S. Kariolis^{*†}, Robert C. Wells[†], Jennifer A. Getz, Wanda Kwan, Cathal S. Mahon, Raymond Tong, Do Jin Kim, Ankita Srivastava, Catherine Bedard, Kirk R. Henne, Tina Giese, Victoria A. Assimon, Xiaocheng Chen, Yin Zhang, Hilda Solanoy, Katherine Jenkins, Pascal E. Sanchez, Lesley Kane, Takashi Miyamoto, Kylie S. Chew, Michelle E. Pizzo, Nicholas Liang, Meredith E. K. Calvert, Sarah L. DeVos, Sulochanadevi Baskaran, Sejal Hall[‡], Zachary K. Sweeney, Robert G. Thorne, Ryan J. Watts, Mark S. Dennis, Adam P. Silverman[†], Y. Joy Yu Zuchero^{*†}

Cortex (cynomologus monkey)

ATV achieves high concentrations and broad distribution of antibodies in nonhuman primate brains

DEUVLI

ETV TECHNOLOGY DELIVERS ENZYMES TO THE BRAIN

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

BLOOD-BRAIN BARRIER

Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice

Julie C. Ullman¹*, Annie Arguello¹*, Jennifer A. Getz¹*, Akhil Bhalla¹, Cathal S. Mahon¹, Junhua Wang¹, Tina Giese¹, Catherine Bedard¹, Do Jin Kim¹, Jessica R. Blumenfeld¹, Nicholas Liang¹, Ritesh Ravi¹, Alicia A. Nugent¹, Sonnet S. Davis¹, Connie Ha¹, Joseph Duque¹, Hai L. Tran¹, Robert C. Wells¹, Steve Lianoglou¹, Vinay M. Daryani¹, Wanda Kwan¹, Hilda Solanoy¹, Hoang Nguyen¹, Timothy Earr¹, Jason C. Dugas¹, Michael D. Tuck², Jennifer L. Harvey², Michelle L. Reyzer², Richard M. Caprioli², Sejal Hall^{1†}, Suresh Poda¹, Pascal E. Sanchez¹, Mark S. Dennis¹, Kannan Gunasekaran¹, Ankita Srivastava¹, Thomas Sandmann¹, Kirk R. Henne¹, Robert G. Thorne¹, Gilbert Di Paolo¹, Giuseppe Astarita¹, Dolores Diaz¹, Adam P. Silverman¹, Ryan J. Watts¹, Zachary K. Sweeney¹, Mihalis S. Kariolis^{1‡}, Anastasia G. Henry^{1‡}

Published May 27, 2020

ETV:IDS Reduces GAG accumulation in the brain

ETV achieves high concentration and broad distribution of enzymes in the brain after i.v. administration

Denali Therapeutics Inc. Confidential

MODALITY-BASED BRAIN DELIVERY PLATFORMS ENABLED BY TV

Fc

Transferrin receptor (TfR) binding site

Enzyme Transport Vehicle (ETV)

ETV:IDS (DNL310) FOR HUNTER SYNDROME

Existing enzyme replacement therapies (ERT) do not effectively cross the BBB and do not address neurodegeneration progresses

JENNLI

ETV:IDS CORRECTS GAGS AND LIPID STORAGE IN THE BRAIN AFTER SYSTEMIC ADMINISTRATION

ETV:IDS reduces GAGs in brain and liver and reverses brain BMP

accumulation in a mouse model of Hunter syndrome

ETV:IDS DISTRIBUTES TO AND CORRECTS GAGS IN CNS CELL TYPES

n=4-6 mice per treatment group, data shown as mean ± s.e.m.; * p < 0.05, ** p < 0.01 *** p < 0.001, **** p < 0.0001; ns = not significant

ETV:IDS reduces GAG accumulation in specific cell types in brain

JENALI

ETV:IDS LOCALIZES TO LYSOSOMES IN MOUSE BRAIN

DAPI NeuN LAMP2 hulgG Colocalization

ETV:IDS distributes into the brain and co-localizes with lysosomal markers in neurons

ETV:IDS DISTRIBUTES TO THE LYSOSOME IN NEURONS

Neurons Colocalization of ETV:IDS and Lysosomes

2h

ETV:IDS i.v. administration

ETV:IDS RESCUES NEURODEGENERATION AS MEASURED BY NfL

n=9-10 per IDS KO; Tf $R^{mu/hu}$ group or 10 per Tf $R^{mu/hu}$ group, data shown as mean ± s.e.m.; * p <0.05, *** p < 0.001, **** p < 0.0001 13 week dose range study

ETV:IDS reduces GAGs in brain and CSF and prevents neuroaxonal injury with chronic dosing at therapeutically relevant doses

DNL310 PHASE 1/2 PATIENT STUDY DESIGN AND OBJECTIVES

OBJECTIVE: BIOMARKER PROOF OF CONCEPT IN HUNTER SYNDROME AND ENABLE TV PLATFORM

- Phase 1/2 multicenter, open-label study in pediatric patients with Hunter syndrome
- 6 month study to evaluate safety, PK, and pharmacodynamic effect to select optimal clinical dose
- Interim PoC readout expected late 2020

SUCCESS CRITERIA

- · Safety: Well tolerated and safe at doses tested
- Biomarker: >50% reduction in CSF GAGs from baseline

JENALI

TV TECHNOLOGY: BROAD OPPORTUNITIES FOR PLATFORM EXPANSION

LRRK2 PROGRAM

LRRK2 AS A THERAPEUTIC TARGET FOR PARKINSON'S DISEASE

BROAD THERAPEUTIC POTENTIAL

· Genetics indicate that lysosomal dysfunction is a central to PD

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

- Inhibition of LRRK2 may be a therapeutically beneficial approach for both genetic and idiopathic PD
- DNL201 and DNL151 are clinical-stage LRRK2 inhibitors that target both wild-type and mutant forms of LRRK2 with therapeutic potential to treat LRRK2 and other drivers of lysosomal dysfunction

DE-RISKED TARGET

• Human LRRK2 LOF mutants do not have functional consequences (Whiffin et al, *Nature Med* 2020)

- Nine month chronic dosing in nonhuman primates with
 DNL201 did not demonstrate effects on pulmonary function
- Pulmonary function is unaffected in nonhuman primates following following LRRK2 inhibition (Baptista et al, *STM* 2020)
- Denali clinical data with DNL201 and DNL151 supports tolerability of >70% inhibition at trough for 28 days in healthy volunteers and patients

INHIBITING LRRK2 RESCUES LYSOSOMAL DYSFUNCTION AND DOWNSTREAM NEURONAL DEGENERATION

Human genetic variants link LRRK2 to familial Parkinson's and sporadic Parkinson's disease risk Region-specific LRRK2 activation corresponds to lysosomal dysfunction in sporadic Parkinson's disease

LRRK2 inhibition is a potential therapeutic approach in both LRRK2-mutant and sporadic PD

DENALI LRRK2 PROGRAM AND DEVELOPMENT STRATEGY

PARALLEL EARLY CLINICAL DEVELOPMENT WITH TWO LRRK2 INHIBITORS (DNL201 AND DNL151)

- Most advanced LRRK2 program in clinical development
- Advanced two chemically distinct molecules through extensive Phase 1 and Phase 1b program (n >300)
 - DNL201 completed Phase 1 and Phase 1b
 - DNL151 has interim Phase 1 data; Phase 1b data expected in mid 2020
- Goal is to select the best molecule for Phase 2/3 program based on all clinical data
 - Safety, PK properties, target engagement, improvement in lysosomal biomarkers

* Protocol amended to add higher dose cohorts for both DNL151 Ph 1 and Ph 1b studies

Expect to select DNL201 or DNL151 for Phase 2/3 program in mid 2020

DNL201 PHASE 1B IN PATIENTS MET ALL BIOMARKER GOALS

DNL201 TID
 Placebo (PBO)
 Low Dose
 High Dose
 BL = Baseline
 Pre = Pre-dose

DNL201 demonstrates strong LRRK2 inhibition and improvement in lysosomal biomarkers

DNL201 PHASE 1B: POTENTIAL CORRECTION OF ELEVATED LYSOSOMAL BIOMARKERS DRIVEN BY LRRK2 MUTATION

Metabolic Profiling Accumulation of CSF Lysosomal Biomarkers in LRRK2 Carrier

LRRK2 Inhibition Reduces Elevated Lysosomal Biomarkers in CSF of LRRK2 G2019S Carriers

DNL151 PHASE 1 IN HV MET ALL BIOMARKER GOALS

DNL151 demonstrates strong LRRK2 inhibition and modulation of lysosomal biomarkers

SAFETY SUMMARY TO DATE

DNL201

Phase 1

• Generally well tolerated, data presented (MJFF Oct 2018)

Phase 1b

- Low dose generally well tolerated
 - Most common AEs (all mild except one) were headache and nausea
 - One SAE, Legionella pneumonia, considered unrelated to study drug
- **High dose** had a higher incidence of moderate adverse events
 - One severe headache leading to dose reduction
 - One early withdrawal preceded by nausea and headache
- Across study, all treatment-related AEs were manageable and reversible
- No dose dependent effects on pulmonary function
- No dose dependent effects on supine or standing vital signs, except for increase in standing HR in 2 subject in HD
- Trend toward mild increase in creatinine (within normal range)

DNL151

Phase 1 (Ongoing)

- Generally well tolerated
- Majority of AEs were mild, no SAEs, no discontinuations related to active drug, no severe AEs
- Protocol amended to explore safety profile in higher dose cohorts

Phase 1b (Ongoing)

- No SAEs to date
- Protocol amended to add higher dose cohort

Both molecules show acceptable safety profiles to advance to Phase 2/3

LRRK2 CLINICAL PROGRAM: SUMMARY AND NEXT STEPS

SUMMARY

- Achieved target engagement and biomarker goals supporting the hypothesis that LRRK2 inhibition modulates and improves lysosomal function in Parkinson's disease
- Both molecules to date show acceptable safety profiles to advance to Phase 2/3

NEXT STEPS

 Make selection between DNL151 or DNL201 for next stage of clinical development based on full data sets from both molecules (safety, target engagement, improvement of lysosomal biomarkers)

DNL201: Complete biomarker analysis of Ph 1b; Develop slow release formulation to support BID dosing **DNL151**: Evaluate DNL151 at higher doses in the Ph 1 HV study and Ph 1b Parkinson's disease studies

• Actively establishing a global network for **patient enrollment**:

OUR 2020 CLINICAL PIPELINE DELIVERABLES

	2020 Plans	Expected Timing
LRRK2 Parkinson's	 Select molecule and prepare for Phase 2/3 	• Mid 2020
ETV:IDS Hunter syndrome	 Establish biomarker proof-of-concept in patients 	Late 2020
EIF2B ALS	 DNL343 Phase 1 in HV results to potentially enable patient study (COVID delay) 	Late 2020
RIPK1 ALS, Alzheimer's	 Results from DNL747 ALS and Alzheimer's studies to potentially enable progression 	■ Mid 2020
BBB Platform	 Establish TV Platform PoC in humans (ETV:IDS) Initiate IND-enabling studies for additional programs 	 Late 2020

RIPK1 PROGRAM

RIPK1 REGULATES INFLAMMATION AND NECROPTOSIS

RIPK1 inhibition enables selective modulation of the TNFR1 pathway, reducing inflammation and necroptosis in the brain

JENALI

RIPK1 INHIBITOR DNL747 DEMONSTRATES DOSE-DEPENDENT INHIBITION IN HEALTHY SUBJECTS

Time course of RIPK1 pS166 inhibition after DNL747 administration every 12 hours until day 14

Data from DNL747 Phase 1 in HV met all biomarker goals

DENALI RIPK1 PROGRAM AND DEVELOPMENT STRATEGY

BROAD EARLY CLINICAL DEVELOPMENT PROGRAM

- Partnered with Sanofi for development of RIPK1 inhibitors in CNS indications and peripheral inflammatory indications
 - Denali and Sanofi jointly develop CNS program (DNL747), Sanofi leads peripheral program (DNL758)
- DNL747 completed enrollment of Phase 1b programs in ALS and AD and initiated OLE study for ALS in 2019
 - Decision on future studies based on data from Phase 1 HV study, Phase 1b studies, OLE in ALS and ongoing chronic toxicology studies in mid 2020
- DNL758 is in Phase 1 study led by Sanofi

Determine clinical development plan for RIPK1 program with Sanofi expected in mid 2020

EIF2B PROGRAM

JENALI

ACTIVATING EIF2B CAN DISSOLVE CELLULAR STRESS GRANULES WHICH ARE CAUSED BY THE INTEGRATED STRESS RESPONSE

Activating EIF2B can inhibit the ISR pathway and

prevent and reverse the formation of stress granules associated with disease

DNL343 TREATMENT CAN REVERSE TDP-43 AGGREGATION

EIF2B activator DNL343 reverses TDP-43 inclusions

DNL343 Inhibition Curve

- DNL343 potently blocks the ISR through activation of EIF2B
- DNL343 dissolves stress-induced RNA binding protein aggregates, including TDP-43 mutant proteins
- DNL343 demonstrates increased inhibition of biomarker linked to stress granule formation

JENALI

DNL343 REDUCES ISR IN MULTIPLE PRECLINICAL NEURODEGENERATION MODELS

DNL343 reduces ISR activation & prevents neuronal degeneration after nerve crush injury

DNL343 is brain penetrant & reduces ISR activation in a TDP-43 mouse model

DNL343 is brain penetrant and displays robust target engagement and neuroprotection in vivo

EIF2B ACTIVATOR DNL343 HAS A PROMISING PRECLINICAL PROFILE

Non-GLP tox studies completed with DNL343

- Well tolerated at expected therapeutic doses
- Pancreatic toxicities associated with other ISR pathway inhibitors (i.e. PERK) not observed

ΡK

TARGET

ENGAGEMENT

SAFETY

Excellent CNS penetration and PK profile in animal models

Robust pathway engagement and neuroprotection observed in vivo

Phase 1 initiated in February 2020

TV PLATFORM Appendix

MODALITY-BASED BRAIN DELIVERY PLATFORMS ENABLED BY TV

ATV: TREM2 IMPROVES MICROGLIAL FUNCTION

Microglial Gene Expression Cholesterol Metabolism Enzyme

TV technology can be applied to antibodies to enhance brain uptake and function

Neuron Article

TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge

Alicia A. Nugent,^{1,2} Karin Lin,^{1,2} Bettina van Lengerich,¹ Steve Lianoglou,¹ Laralynne Przybyla,¹ Sonnet S. Davis,¹ Ceyda Llapashtica,¹ Junhua Wang,¹ Do Jin Kim,¹ Dan Xia,¹ Anthony Lucas,¹ Sulochanadevi Baskaran,^{1,3} Patrick C.G. Haddick,¹ Melina Lenser,¹ Timothy K. Earr,¹ Ju Shi,^{1,4} Jason C. Dugas,¹ Benjamin J. Andreone,¹ Todd Logan,¹ Hilda O. Solanoy,¹ Hang Chen,^{1,5} Ankita Srivastava,¹ Suresh B. Poda,¹ Pascal E. Sanchez,¹ Ryan J. Watts,¹ Thomas Sandmann,¹ Giuseppe Astarita,¹ Joseph W. Lewcock,¹ Kathryn M. Monroe,^{1,*} and Gilbert Di Paolo^{1,6,*} ¹Denali Therapeutics, South San Francisco, CA 94080, USA

MODALITY-BASED BRAIN DELIVERY PLATFORMS ENABLED BY TV

JENALI

PTV:PGRN IMPROVES LYSOSOMAL FUNCTION IN BRAIN

data shown as mean ± s.e.m.; **** p < 0.0001 One-way ANOVA, Sidak's multiple comparison correction

LRRK2 Appendix

LRRK2 INHIBITION MAY HAVE BROAD THERAPEUTIC POTENTIAL FOR PD

- Lysosomal dysfunction is a central pathophysiology of PD in patients with and without known genetic drivers of PD
- Inhibition of LRRK2 may be a therapeutically beneficial approach for many forms of PD, including idiopathic PD