



Ralph Kern MD MHSc COO/CMO February 11, 2019



### **Forward Looking Statement**

Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at <a href="http://www.sec.gov">http://www.sec.gov</a>.

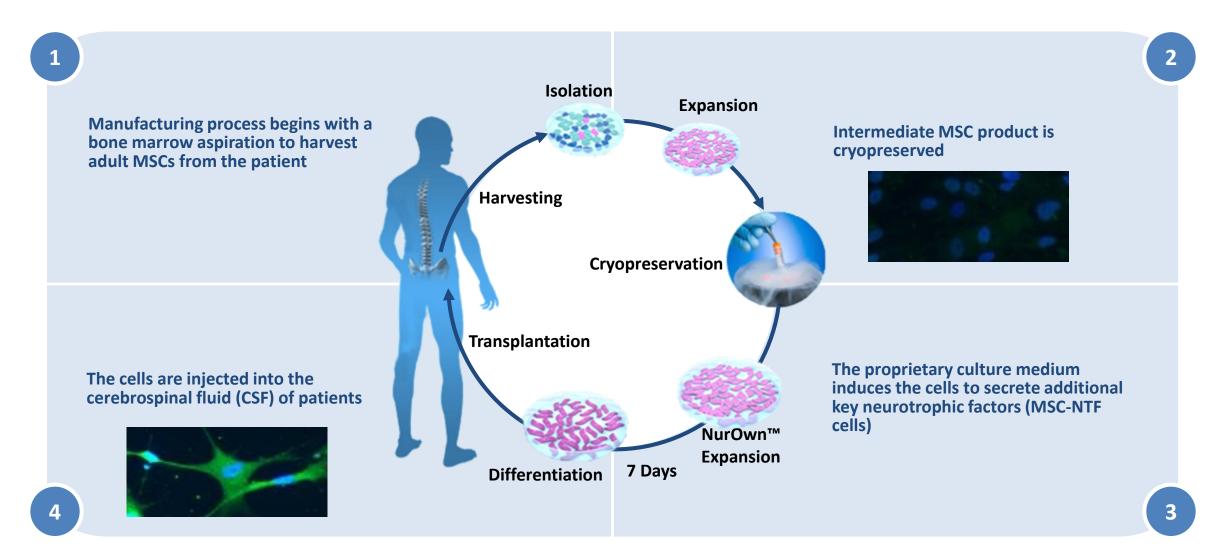
These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

#### **Brainstorm at a Glance**



Clinical stage biotechnology company developing innovative autologous cellular therapies for neurodegenerative disease

Actively recruiting phase 3 clinical trial in ALS, an orphan disease with no existing cure and limited treatment options


Large addressable markets – progressive MS (500K US) and ALS (30K US)

Proven technology platform and strong manufacturing capabilities

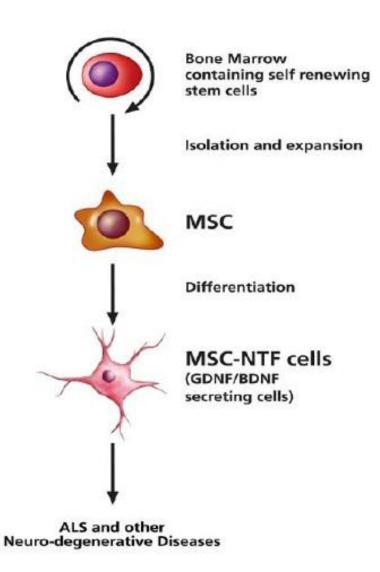
**Robust IP portfolio** 

#### NurOwn® Process





### **NurOwn® Technology Platform**




Autologous MSCs derived from bone marrow

Intermediate cryopreserved MSC product allows for 3 years of treatment from a single bone marrow aspiration

Final differentiated product are NTF-secreting MSCs

Dual mechanism of action- immunomodulation and neuroprotection through secreted NTFs and anti-inflammatory cytokines



### **Pipeline**



| ALS – Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease) |         |         |         |  |  |  |  |
|------------------------------------------------------------|---------|---------|---------|--|--|--|--|
| Preclinical                                                | Phase 1 | Phase 2 | Phase 3 |  |  |  |  |
| Progressive MS – Multiple Sclerosis                        |         |         |         |  |  |  |  |
| Preclinical                                                | Phase 1 |         | Phase 3 |  |  |  |  |
|                                                            |         |         |         |  |  |  |  |
| Autism Spectrum Disorder                                   |         |         |         |  |  |  |  |
| Preclinical                                                | Phase 1 | Phase 2 | Phase 3 |  |  |  |  |
|                                                            |         |         |         |  |  |  |  |
| Parkinson's Disease                                        |         |         |         |  |  |  |  |
| Preclinical                                                | Phase 1 | Phase 2 | Phase 3 |  |  |  |  |
|                                                            |         |         |         |  |  |  |  |
| Huntington's Disease                                       |         |         |         |  |  |  |  |
| Preclinical                                                | Phase 1 | Phase 2 | Phase 3 |  |  |  |  |
|                                                            |         |         |         |  |  |  |  |
| Peripheral Nerve Injury                                    |         |         |         |  |  |  |  |
| Preclinical                                                | Phase 1 | Phase 2 | Phase 3 |  |  |  |  |

#### What is ALS?

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease <sup>(1)</sup>, is a progressive neurodegenerative disease that affects the function of nerves and muscles. This debilitating condition usually affects people aged 40 to 70, however, individuals in their 20s and 30s have also been known to develop ALS.

#### **Future Predictions**

Researchers have predicted that the number of worldwide ALS cases will increase by 69% in 2040, compared to 2015. The main cause of this projected increase is due to an ageing population, particularly in developing nations.

### **ALS Incidence**



It is estimated that **450,000** people worldwide are living with ALS, with over **30,000** people in the U.S. suffering from this neurodegenerative condition at any given time.

Someone is diagnosed with ALS every

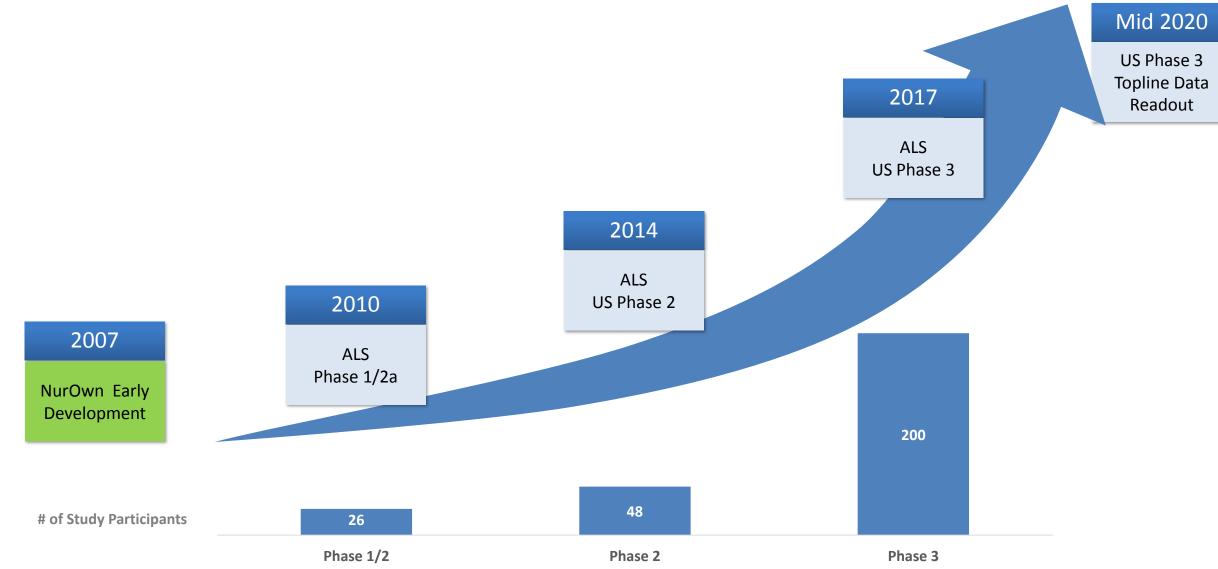
90

minutes

New US cases per year

6,000

\$6B


annual health care cost

30

months
Life expectancy from diagnosis

### **NurOwn® ALS Development**



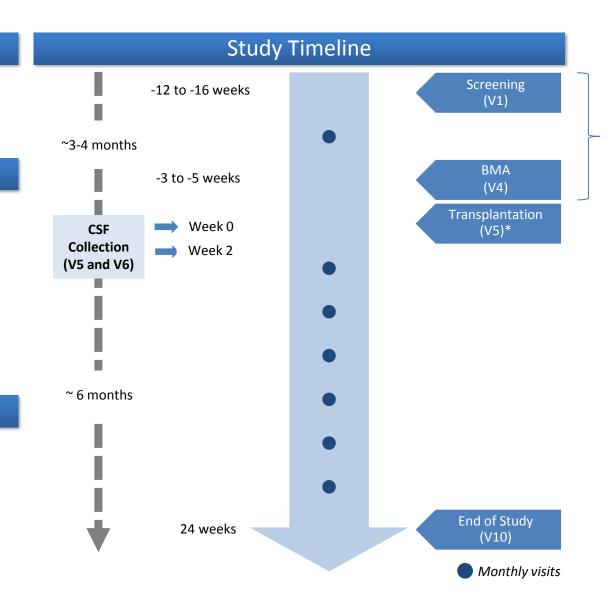


### **ALS Phase 2 Trial Design and Safety Outcomes**



3 month run in period

#### Safety Design


- 48 participants (16 per site)
- Randomized 3:1
- Blinded to allocation

#### **Primary Outcomes**

- No deaths or treatment related SAEs
- No drop outs related to SAEs
- Most common adverse events transient and mild/moderate severity and procedure related

#### Efficacy

- ALSFRS-R
- SVC



### Phase 2 Trial – Approach to Data Analysis



#### Phase 2 Trial Efficacy Analysis

Mean change in ALSFRS-R slope

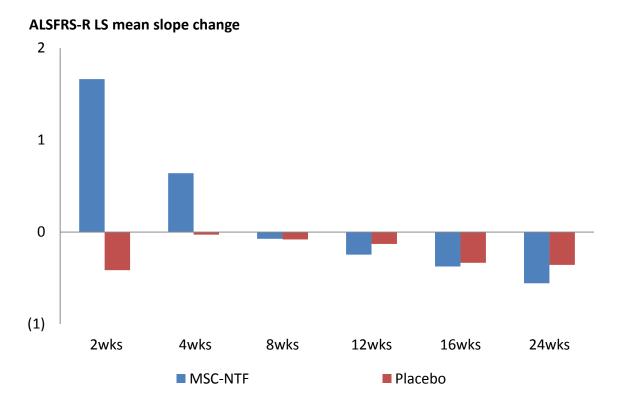
ALSFRS-R Responder Analysis

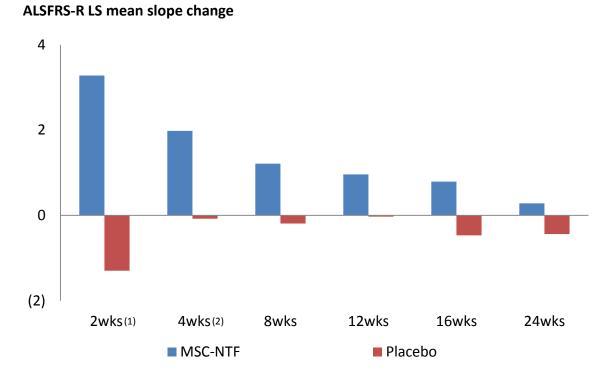
Rapid progressor subgroup prespecified

#### **ALS Rapid Progressor Subgroup**

✓ Higher correlation of ALSFRS-R change with survival

✓ Higher response rate


✓ Higher levels of CSF inflammatory biomarkers


# ALSFRS-R slope improvement (mean pre-post LS mean slope change/month)

#### brainstorn cell therapeutics

#### All participants (n=46)

#### Rapid progressors (n=21)





## **Responder Analysis: ≥1.5 points/month ALSFRS-R slope improvement**





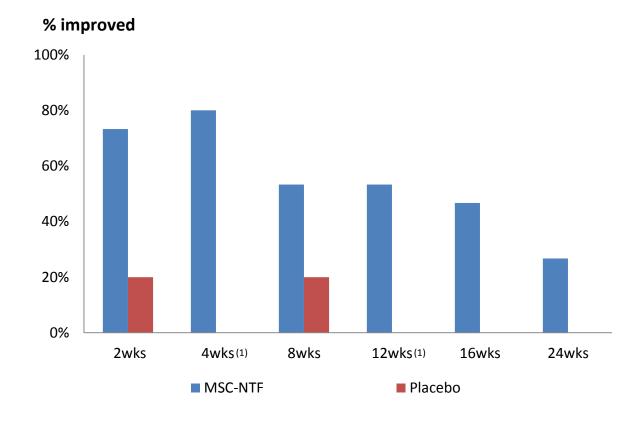
### % improved 100% 80% 60% 40% 20%

8wks

4wks

MSC-NTF

12wks


■ Placebo

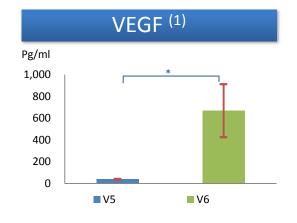
16wks

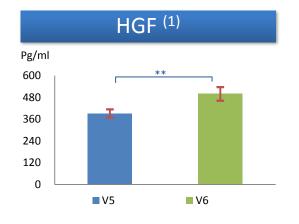
0%

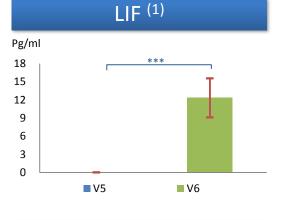
2wks

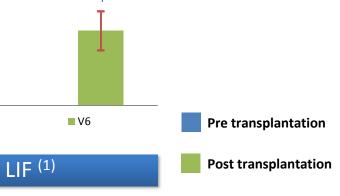
#### Rapid progressors (n=21)



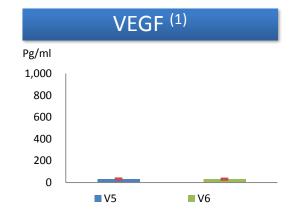

12 1. p<0.05 (two-sided Fisher's exact test)

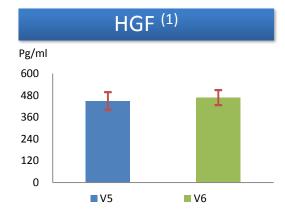

24wks

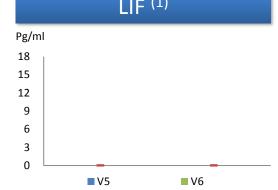

## NurOwn® Phase 2 ALS Biomarkers: CSF NTFs Significantly Increased 2 Weeks Post-Treatment Compared to Baseline





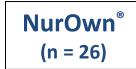



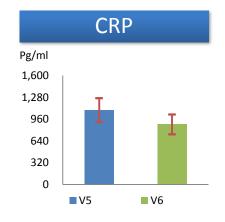



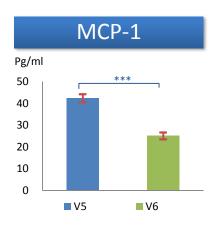


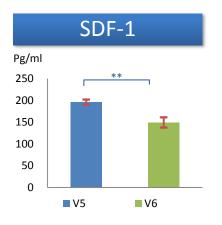


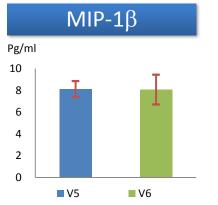


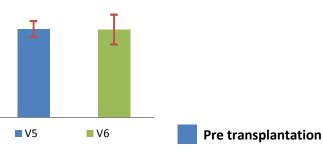



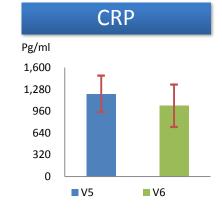


## NurOwn® Phase 2 ALS Biomarkers: CSF **Inflammation Significantly Decreased 2 weeks Post-Treatment Compared to Baseline**

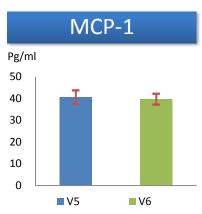


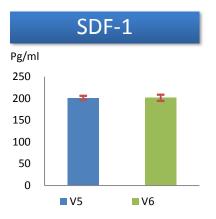


Post transplantation

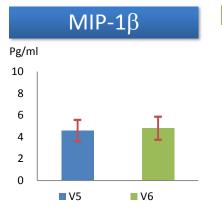















14 1. Mean  $\pm$  SEM. p<0.01, p< 0.001 for [], respectively.



### NurOwn® Phase 2 ALS Trial Summary

Intrathecal treatment was safe and well tolerated

Repeat dosing is needed

Rapid progressor subgroup showed higher efficacy

Biomarkers confirmed mechanism of action

### NurOwn® ALS Phase 3 Clinical Trial



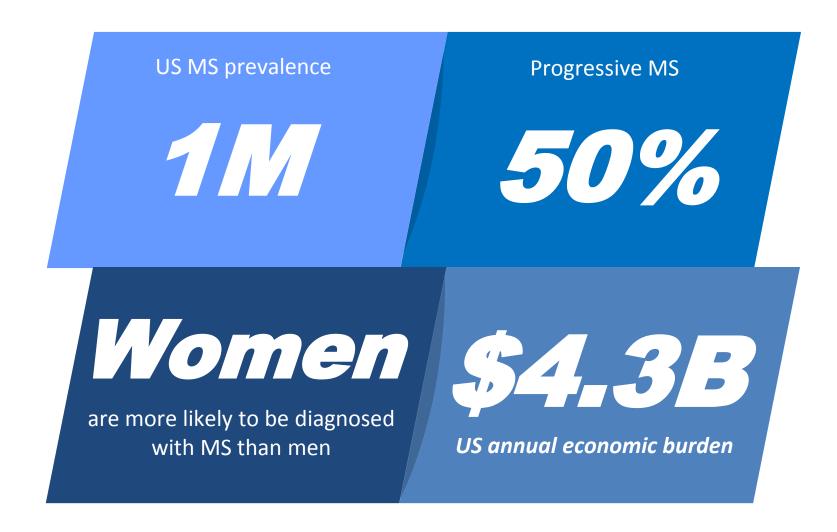
#### **Pre-Treatment**

- Inclusion criteria
  - Less than 60 years of age
  - SVC > 65%
  - ALS ≤ 2 years
  - Rapid progressors
- Exclusion criteria
  - Edaravone
  - Ventilation
  - Feeding tube
- Randomization
- Bone Marrow Aspiration

#### Treatment

- N=200 patients
  - Enrollment completed by mid-2019
- 1:1 randomization
- Study duration: 11.5 months
  - Seven months post-first transplantation
- Top-line data expected mid 2020

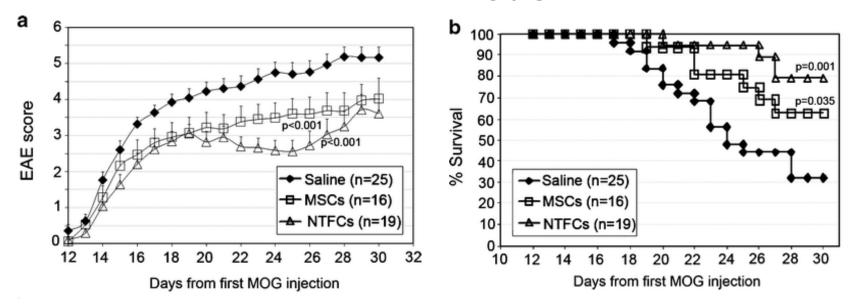
#### Outcomes


- ALSFRS-R responder analysis (post-treatment slope change)
- Safety
- ALSFRS-R change from baseline
- SVC
- Tracheostomy-free survival
- CSF/biomarkers (seven samples over six months)

#### Site Location






### **Progressive MS Unmet Need**







#### **EAE Model**



Intracerebroventricular injection of 2.5X10<sup>5</sup> cells



#### **MS Phase 2 Clinical Trial**

IND granted December 2018

Repeat dosing intrathecal MSC-NTF cells (NurOwn®)

5 leading US MS centers

Validated MS outcomes and biomarkers

First patient to be treated Q1 2019, top line data mid 2020



### **Financial Highlights**

| \$US in Thousands (except for Shares, Warrants and Options data) | September 30, 2018    |  |  |
|------------------------------------------------------------------|-----------------------|--|--|
| Cash and cash equivalents                                        | 697                   |  |  |
| Short-term deposit                                               | 10,194                |  |  |
| Non-Dilutive Grants (1)                                          | 8,000                 |  |  |
| Total Liquidity                                                  | 18,891                |  |  |
| Cap Structure                                                    |                       |  |  |
| Debt                                                             | <u>-</u>              |  |  |
| Shares Outstanding (including outstanding Warrants and Options)  | 20,700,713            |  |  |
| Options / Warrants outstanding                                   | 1,457,620 / 4,578,867 |  |  |
| Net Operating Loss                                               | 88,640                |  |  |

<sup>(1)</sup> Supported by \$16 million CIRM and \$2 million Israel Innovation Authorities grants



### **BrainStorm Management Team**

**Chaim Lebovits** 

**President and CEO** 

Ralph Kern, MD, MHSc.

COO and CMO

**Eyal Rubin** 

**EVP, CFO** 

**Mary Kay Turner** 

**VP, Patient Advocacy and Government Affairs** 

Joe Petroziello BS MS

VP, Scientific and Corporate Communications

Yael Gothelf PhD.

**VP, Scientific and Regulatory Affairs** 

**Uri Yablonka** 

**EVP, Chief Business Officer** 

Yossef Levy PhD.

**VP, Cell Production** 

Revital Aricha PhD.

VP, R&D

**Susan Ward PhD** 

**Head Clinical Research Operations** 





**Thank You** 



## Appendix





#### June S. Almenoff MD PhD

- Chief Operating Officer & Chief Medical Officer of Innovate Biopharmaceutical
- Formerly President and CMO of Furiex Pharmaceuticals and Board member of Tigenix NV (TIG)

### Tony Polverino PhD

CSO - Kite Pharmaceuticals





#### Jerold Chun, M.D., PhD -Chair

 Neuroscientist, Professor and Senior Vice President of Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, San Diego CA.

#### Stanley H. Appel, M.D.

 Peggy and Gary Edwards Distinguished Endowed Chair for the Treatment and Research of ALS, Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston TX.

#### Amit Bar-Or, M.D.

Presidential Endowed Chair at the University of Pennsylvania (UPenn/CHOP),
 Director of the Centre for Neuroinflammation and Experimental
 Neurotherapeutics and Chief, MS Division, Philadelphia PA.





| Patent Name/ Int. App. No.                                                                               | Pending Jurisdictions                                      | Allowed<br>Jurisdictions | Granted<br>Jurisdictions | <b>Expiry Date</b> |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|--------------------------|--------------------|
| ISOLATED CELLS AND POPULATIONS COMPRISING SAME<br>FOR THE TREATMENT OF CNS<br>DISEASES/PCT/IL2006/000699 | US                                                         |                          | Europe, US               | 2030               |
| MESENCHYMAL STEM CELLS FOR THE TREATMENT OF CNS DISEASES PCT/ IL2009/000525                              |                                                            | Hong Kong                | US, Europe,<br>Israel    | 2032               |
| METHODS OF GENERATING MESENCHYMAL STEM CELLS WHICH SECRETE NEUROTROPHIC FACTORS / PCT/IL2013/050660      | Europe, Hong Kong,<br>Israel, Canada, Brazil,<br>Japan     | Israel                   | US, Japan                | 2038               |
| METHOD OF QUALIFYING CELLS /PCT IL2015/050159                                                            | US, Europe, Hong<br>Kong, Israel, Canada,<br>Brazil, Japan |                          |                          | 2040               |
| Methods of treating ALS PCT/IL2017/050801                                                                | PCT                                                        |                          |                          | 2042               |