

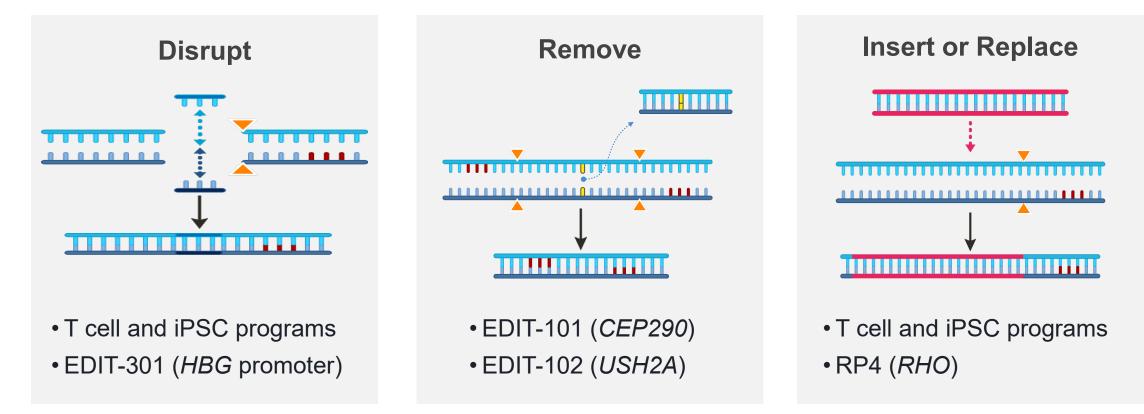
Corporate Presentation

August 4, 2021

Forward Looking Statements

This presentation contains forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995. The words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "target," "should," "would," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements in this presentation include statements regarding the initiation, timing, progress and results of the Company's preclinical and clinical studies and its research and development programs, including beginning patient dosing in the RUBY trial by the end of 2021, the timing for the Company's receipt and presentation of data from its clinical trials and preclinical studies, including presenting initial clinical data from the BRILLIANCE trial in September 2021, and the timing or likelihood of regulatory filings and approvals, including filing an IND for EDIT-301 for the treatment of beta-thalassemia by the end of 2021. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: uncertainties inherent in the initiation and completion of pre-clinical studies and clinical trials and clinical development of the Company's product candidates; availability and timing of results from pre-clinical studies and clinical trials; whether interim results from a clinical trial will be predictive of the final results of the trial or the results of future trials; expectations for regulatory approvals to conduct trials or to market products and availability of funding sufficient for the Company's foreseeable and unforeseeable operating expenses and capital expenditure requirements. These and other risks are described in greater detail under the caption "Risk Factors" included in the Company's most recent Annual Report on Form 10-K, which is on file with the Securities and Exchange Commission, as updated by the Company's subsequent filings with the Securities and Exchange Commission, and in other filings that the Company may make with the Securities and Exchange Commission in the future. Any forward-looking statements contained in this presentation represent Company's views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date. Except as required by law, the Company explicitly disclaims any obligation to update any forward-looking statements.

Editas is Transforming Medicine


Harnessing the power and potential of gene editing to develop medicines for people living with serious diseases around the world

> Striving to discover, develop, manufacture, and commercialize transformative, durable genomic medicines

Editas Medicine's Powerful Engine

Editing Strategies for Precise Gene Editing Medicines

Differentiated Platform

The *only* company with multiple proprietary CRISPR editing systems

Unparalleled IP Broadest and deepest CRISPR IP portfolio

Three Platforms of Medicine Development

Built on a Powerful Gene Editing Engine and a Talented Team

Global leader in in vivo gene editing Ex Vivo medicines, starting with LCA10, moving into other inherited retinal diseases, and **Differentiated approach** eventually into different tissues for treating sickle cell **Transformative** and beta thalassemia Medicines, **Changing Lives Cell Therapy** Gene edited iPSC NK cells to revolutionize cancer treatments for multiple tumor types The People: seasoned The Engine: best-in-class

gene editing platform, broadest intellectual property, flexible and robust manufacturing capabilities

executive team supported by world-class scientists

Right Edits, Right Cells, Right Delivery

In Vivo

Successful editing of the CEP290 gene for LCA10

G

Efficient and reproducible genome editing in human HSCs *ex vivo*

Demonstrated >90% of editing in initial targets

Efficient editing in LCA10 patient derived cells correcting mutations *in vitro* and NHPs *in vivo*

Highly efficient and safer editing of beta-globin locus leading to reduced sickling and higher fetal hemoglobin First ever *in vivo* gene editing medicine administered to humans

Entering clinic with potential best-in-class product for sickle cell disease

Enhanced tumor killing with double knockout iNK cells

Leverage findings from LCA10 to move into other inherited retinal diseases and eventually into different tissues

Expand ex vivo platform to address other autologous cell therapies

Develop off-the-shelf iPSCderived cells to revolutionize cancer treatments for multiple tumor types and other cell mediated diseases

PROOF OF CONCEPT

VALIDATION

Successful multiplex editing on

various cell lines

PROGRESS

FUTURE

Highly Differentiated Editas-Engineered Nuclease

Proprietary Eng. AsCas12 Overcomes the Activity/Specificity Tradeoff of Prior Nucleases

	Why it matters	SpCas9	SaCas9	Eng. AsCas12a
Specificity	Reduces safety risks	Low	High	High
Single AAV delivery	Efficient AAV delivery for in vivo medicines	No	Yes	Yes
Guide RNA total size (bp) (shorter is better)	Ease of guide RNA manufacturing	100	100	40-66
Guide RNA targeting	On-target efficacy and specificity for synthetic RNAs	Low	Low	High

Pipeline

PROGRAM (OR DISEASE/ CANDIDATE)	DISCOVERY	LEAD OPTIMIZATION	IND ENABLING	EARLY-STAGE CLINICAL	LATE-STAGE CLINICAL	COMMERCIAL PARTNER	ENABLING TECHNOLOGY
IN VIVO GENE EDITED MEDICINES							
OCULAR							
EDIT-101: Leber Congenital Amaurosis 10 (LCA10)							
EDIT-102: Usher Syndrome 2A (USH2A)							
Autosomal Dominant Retinitis Pigmentosa 4 (RP4)							
OTHER INDICATIONS							
Neurological Diseases							🍓 AskBio
EX VIVO GENE EDITED CELL MEDICINES							
HEMOGLOBINOPATHIES							
EDIT-301: Sickle Cell Disease (SCD)							
EDIT-301 : β-Thalassemia					1		
CELLULAR THERAPY MEDICINES							
ONCOLOGY							
αβ T Cells						ر ^{ال} Bristol Myers Squibb	
iPSC NK (iNK) Cells							

2021 Anticipated Milestones

In Vivo Gene **Edited Medicines**

Ocular

- Initiate dosing of second cohort (\bigcirc) for Brilliance trial for EDIT-101 in Q1 2021
- Present clinical data for EDIT-101 by year-end
- Declare development candidate for RP4 by year-end

Other Indications

○ Advance *in vivo* gene edited medicines with AskBio

Ex Vivo Gene **Edited Cell Medicines**

Hematology

- Initiate dosing of EDIT-301 for Ruby trial for sickle cell disease
- File IND for EDIT-301 for beta-thalassemia by year-end

Cellular Therapy Medicines

Oncology

- Advance ex vivo preclinical studies for a gene edited iNK cell medicine to treat solid tumors
- \bigcirc Advance $\alpha\beta$ T cell medicines in collaboration with Bristol Myers Squibb

In Vivo Gene Edited Medicines

Potential to Address Significant Unmet Need

Future Indications

Over 6,000 human genetic disorders²

- o Neuromuscular
- \circ Liver
- Hematology
- Central nervous system
- Cardiology
- Other therapeutic areas

Next Indication: Neurology

Initial Focus: Ocular

5.5 million patients with IRDs worldwide¹

EDIT-101: Leber congenital amaurosis 10 (LCA10)
EDIT-102: Usher syndrome 2A (USH2A)
RP4 (Autosomal dominant retinitis pigmentosa 4)
Other inherited retinal diseases

 Undisclosed neurological indication

Ocular Program Overview

	EDIT-101: LCA-10	EDIT-102: USH2A	RP4	Undisclosed Target
Inheritance	Autosomal Recessive	Autosomal Recessive	Autosomal Dominant	
Gene	CEP-290	Usherin	Rhodopsin	
Mutation	c.2991+1655A>G mutation in intron 26 (IVS26)	Exon 13 mutations	RHO mutations	
Target Cells	Photoreceptors	Photoreceptors	Photoreceptors	
Presentation	Blindness/ severe visual impairment at or near birth	Loss of peripheral and night vision, eventual legal blindness	Reduced rod function, leading to night blindness, loss of peripheral vision	

EDIT-101 progress is de-risking subsequent ocular indications

EDIT-101 to Treat Leber Congenital Amaurosis 10 (LCA10)

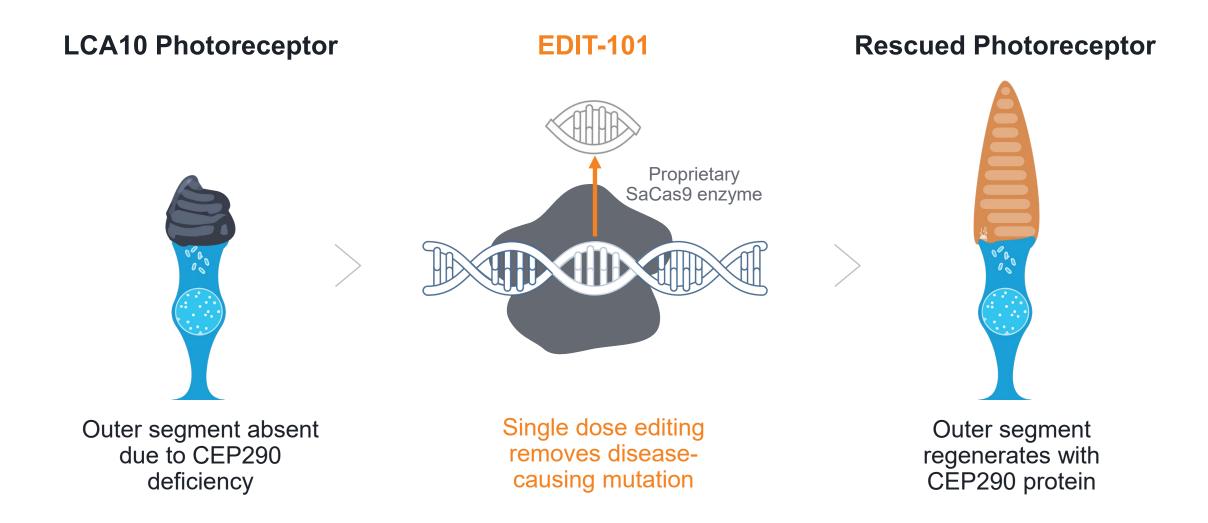
First Ever In Vivo Gene Edited Medicine Administered to Humans

Disease

Lack of outer segment of photoreceptors leading to blindness in childhood

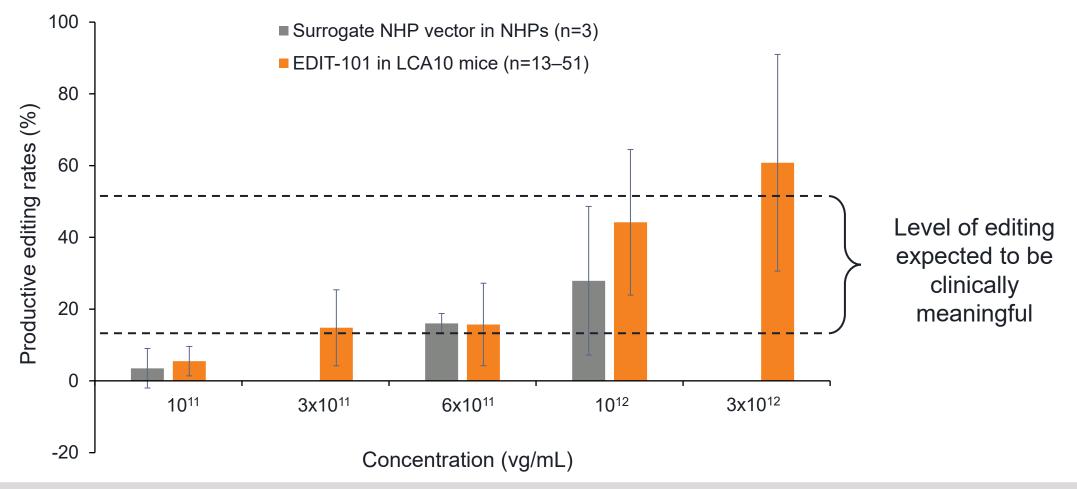
Approach

Potentially cure genetic blindness by *removing* CEP290 genetic mutation in photoreceptors


Status

Concurrently enrolling pediatric mid-dose and adult high-dose cohorts of Brilliance trial

Initial clinical data in September



Removing Mutation with Editing to Correct Vision

EDIT-101 Demonstrates Robust Productive Editing

At maximally tolerated doses, >50% editing is observed EDIT-101 was well tolerated in NHPs

EDIT-101 Trial Design, Status & Update

STATUS

Enrolling patients in the pediatric mid-dose and adult high-dose cohorts.

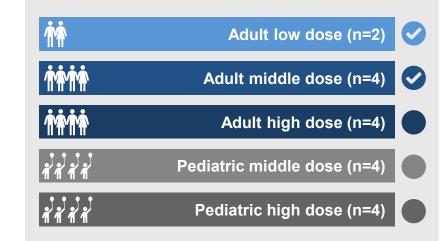
PATIENTS

18 patients, aged3 years and above

INTERVENTION

Single dose of EDIT-101 administered via subretinal injection to eye with worse vision

ENDPOINTS


- **Primary: Safety** including frequency and number of adverse events related to drug, procedure, and dose limiting toxicities
- **Secondary: Efficacy** including visual acuity, mobility course, macula thickness, pupillometry, and electroretinogram using patient's own baseline value for each efficacy measure

PROTOCOL

Based on safety in the first cohort, protocol was amended to broaden inclusion criteria of sentinel patients

SAFETY REVIEW

IDMC endorsed proceeding with first pediatric cohort based on a review of clinical safety data from adult lowdose and adult mid-dose cohorts

EDIT-102 to Treat Usher Syndrome Type 2A

Disease

Degeneration of photoreceptors causing progressive vision loss and blindness

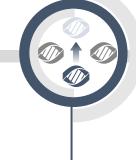
Approach

Remove USH2A mutation in photoreceptors using same AAV and promoter as EDIT-101

Status

Development candidate optimization

Supporting preclinical data presented at ARVO



Autosomal Dominant Retinitis Pigmentosa 4 (RP4)

Disease

Progressive decline in night vision, followed by peripheral vision, and eventual blindness

Approach

Replace rhodopsin gene in photoreceptors to correct all RP4 mutations with AAV

Status

Declare development candidate by year end 2021

Ex Vivo Gene Edited Cell Medicines for Hemoglobinopathies

Potential Best-in-Class Medicine for Sickle Cell Disease and Beta-Thalassemia

Use proprietary Cas12a enzyme to edit beta-globin locus to safely, robustly, and durably increase fetal hemoglobin with single administration

- ✓ Naturally occurring mutations support clinical relevance and safety of editing at the HBG1/2 promoter region
- Cas12a makes naturally more precise genomic alterations, reduces sickle globin, in contrast to lentiviral gene therapy
- ✓ Editing beta-globin locus provides level of inherent safety and more robustly repopulates red blood cell lineage, in contrast to editing at the BCL11A site
- ⊘ Demonstration of no measurable off-targets

Epidemiology

165,000+ sickle cell patients and **15,000+** beta-thalassemia patients in the U.S. and Europe^{1,2,3}

EDIT-301 to Treat Sickle Cell Disease and Beta-Thalassemia

Disease

Deformed and diminished blood cells causing anemia, organ failure, mortality, and pain crises in sickle cell disease

Approach

Leverage proprietary Cas12a enzyme to safely and effectively edit the HBG 1/2 promoter to increase fetal hemoglobin

| Status

Screening sickle cell patients for dosing by year-end

On track to submit IND for β-thalassemia by year-end

Goal is Superior Safety and Efficacy

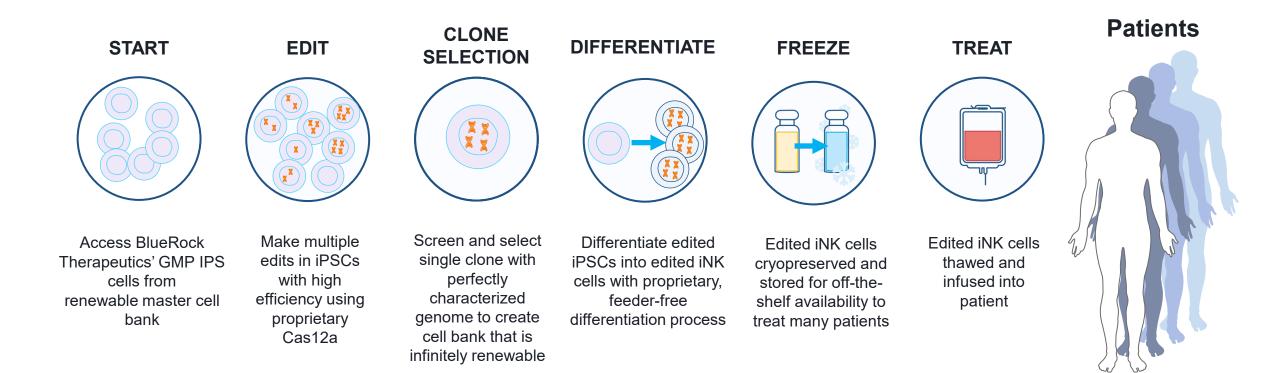
Differentiated Approach Utilizing Proprietary Cas12a at the HBG1/2 Promoter

	EDIT-301: β-globin Locus	BCL11A Editing	Lentiviral Gene Therapy
EFFICACY		1	_
Upregulates fetal hemoglobin?			•
Reduces sickle globin expression?			•
SAFETY			
Precise editing at specified location in genome?			₿
Targets natural locations of fetal hemoglobin mutations?	\bigcirc	8	•

Cellular Therapy Medicines for Oncology

Leveraging iPSC Platform to Create Off-the-Shelf Treatments for Cancer

Gene edited iPSC cells are revolutionizing cancer therapy through numerous cellular advantages


- ☑ Unlimited self-renewal potential
- ✓ Single cell clonability for generating homogeneous cell population
- Proprietary site-specific knock-in technology ensures high-level expression of CARs
- Multi-edited, knock-ins & knock-outs, iNK cells increase activity and persistence
- Over the second second

Epidemiology

Over **1.3 million** new cases of solid tumor cancers, linked to over **400,000** deaths, per year in the US¹

iNK Cell Medicine Process

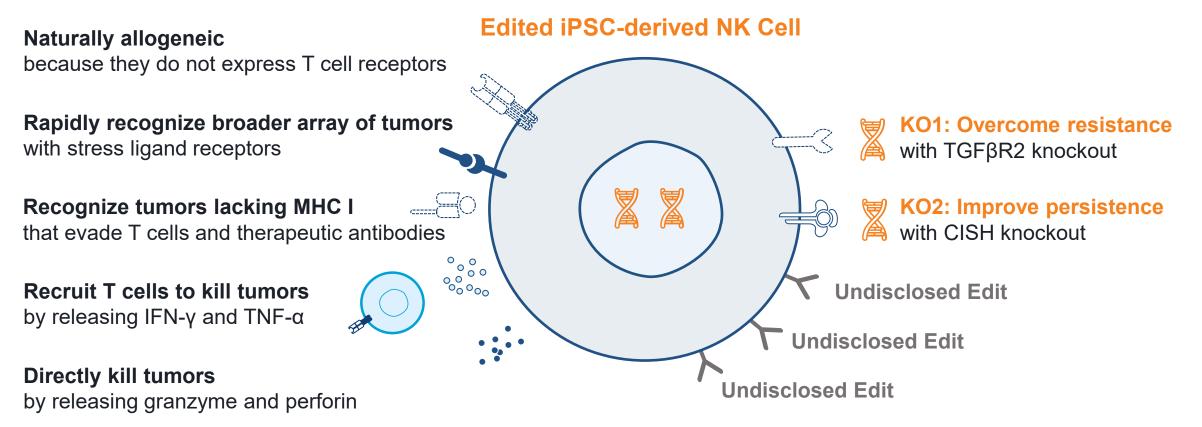
Gene Edited iPSC-Derived NK Cells For Solid Tumors

Disease

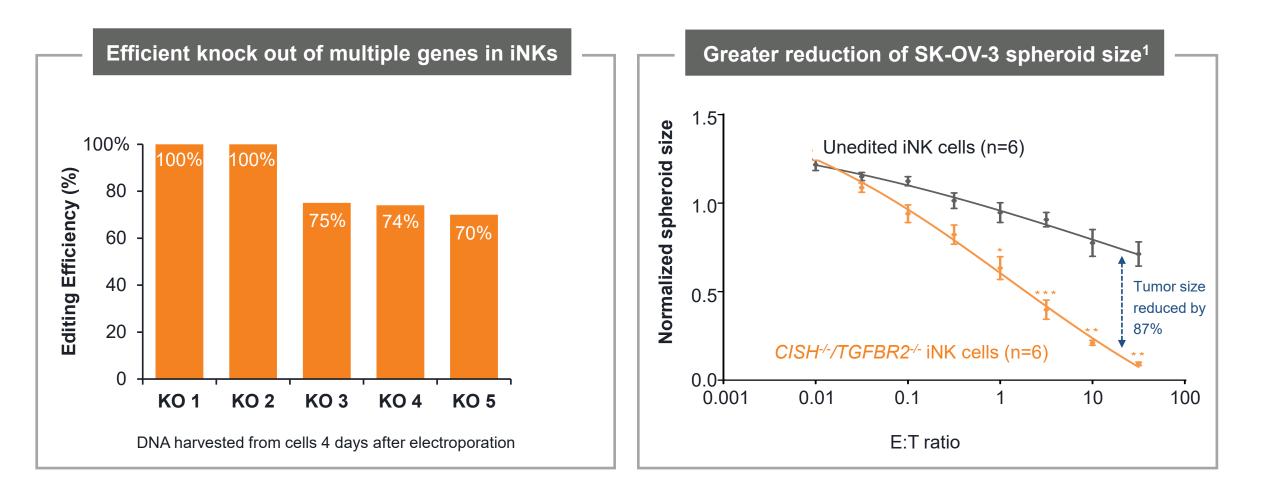
Malignant solid tumors that develop in lung, colon, breast, and other organs

Approach

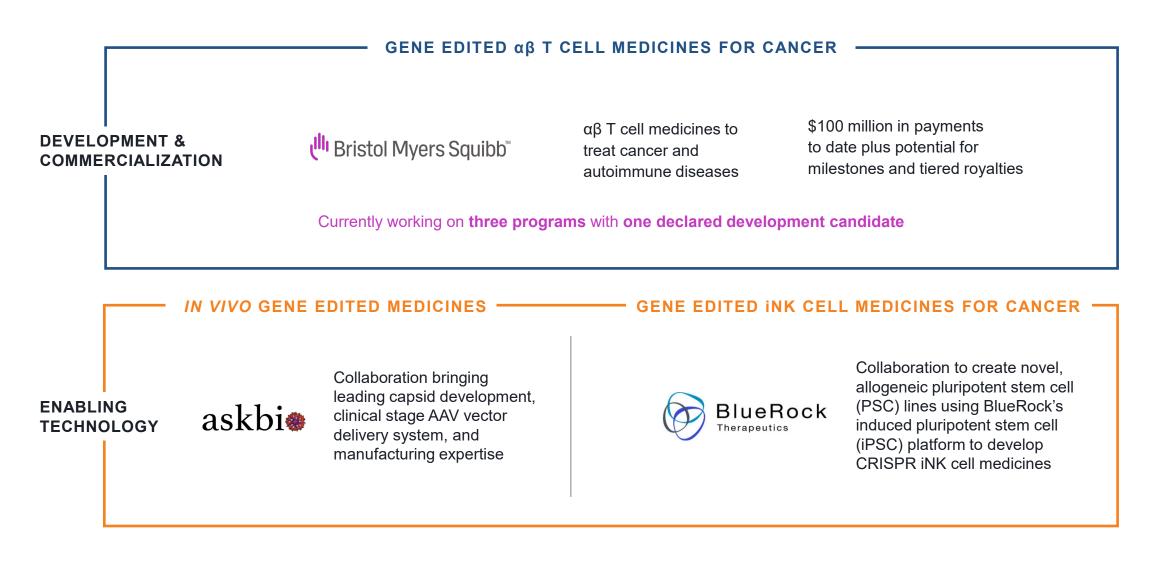
Multiplexed gene editing of NK cells for enhanced tumor-killing, off-the-shelf cell therapies


Status

Advancing preclinical studies for development candidate


Gene Edited iNK Cells Will Be Transformational for Cancer Patients

Advantages of NK Cells


editas

Efficient Editing and Sustained Anti-Tumor Activity

Collaborations

Intellectual Property

Unmatched Intellectual Property Portfolio in CRISPR Gene Editing

Foundation

Exclusive foundational IP for CRISPR/ Cas9 and Cas12a (Cpf1) editing in human therapeutics

Breadth

Multiple species and CRISPR forms to address widest range of diseases

Depth

Over 220 issued patents, over 800 applications pending

Markets

Global coverage including US, Europe, Japan, Australia, Canada, China

Executive Team

Seasoned Management Team Supported by World-Class Scientists

James C. Mullen Chief Executive Officer

Biogen *Patheon*

Michelle Robertson Chief Financial Officer

Momenta[®]

Baxalta SANOFI GENZYME 🎝 **Shire**

Bruce Eaton, Ph.D.

Chief Business Officer

Ci2 Pharmaceuticals NEXSTAR

Lisa A. Michaels, M.D. Chief Medical Officer

Robert Wood Johnson Medical School

🔅 Allergan

Tizen

UNIVERSITY VIRGINIA SCHOOL OF MEDICINE

Chi Li, Ph.D., MBA, RAC

Chief Regulatory Officer

Mark S. Shearman, Ph.D. Chief Scientific Officer

agtc 💈

somalogic

Clare Carmichael Chief Human Resources Officer

CJ

celularity

Harry Gill Senior Vice President, Operations

BAYER

Company Highlights

Best-In-Class *In Vivo* and *Ex Vivo* Gene Edited Medicines

First ever administration of an *in vivo* gene editing medicine in humans with **EDIT-101 for potentially** curing genetic blindness

Expanding *in vivo* gene editing medicines to address unmet monogenetic diseases worldwide

Developing **EDIT-301 as potential best-in-class** *ex vivo* cell medicine for sickle cell disease and beta-thalassemia

> Developing potential **best-in-class iPSC-derived NK (iNK) cell medicines for solid tumors**

Financial, Operational and Organizational Excellence

Robust **internal and external manufacturing** capabilities, ready to scale for commercialization

Strong intellectual property position in the space with exclusive rights to foundational Cas9 and Cas12a patent estates

Sufficient capital to sustain operations well into 2023

Diverse and experienced leadership team bridging from research towards commercialization

