Safety, Tolerability, and Antiviral Activity of the siRNA VIR-2218 in Combination With the Investigational Neutralizing Monoclonal Antibody VIR-3434 For the Treatment of Chronic Hepatitis B Virus Infection: Preliminary Results From the Phase 2 MARCH Trial

Edward Gane¹, Alina Jucov², Marta Dobryanska³, Ki Tae Yoon⁴, Tien-Huey Lim⁵, Andre Arizpe⁶, Daniel Cloutier⁶, Ling Shen⁶, Sneha V. Gupta⁶, Audrey H. Lau⁶, Carey Hwang⁶, Young-Suk Lim⁷

¹Faculty of Medicine, University of Auckland, Auckland, New Zealand; ²Arensia Exploratory Medicine GmbH, Düsseldorf, Germany and Nicolae Testemitanu State University of Medicine and Pharmacy, Chişinău, Moldova; ³Medical Center of Limited Liability Company “Harmoniya krasa” and Arensia Exploratory Medicine, Kyiv, Ukraine; ⁴Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, Korea; ⁵Department of Gastroenterology, Middlemore Hospital, Auckland, New Zealand; ⁶Vir Biotechnology, Inc., San Francisco, CA; ⁷Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

American Association For The Study Of Liver Diseases (AASLD), The Liver Meeting 4–8 November 2022; Washington, DC
Dr. Gane is Professor of Medicine at the University of Auckland, New Zealand and Chief Hepatologist, Transplant Physician and Deputy Director of the New Zealand Liver Transplant Unit at Auckland City Hospital.

He is an Investigator for many international clinical trials of therapies for chronic viral hepatitis with particular interest in early phase development of new direct acting antiviral therapies against hepatitis C and hepatitis B.

Dr. Gane has published over 500 papers in peer-reviewed journals and is an Associate Editor for the *Journal of Hepatology*.
Disclosures

1. Dr. Edward Gane serves on HBV Scientific Advisory Boards for Gilead, ALIGOS, Janssen, Roche, and Assembly

2. He received unrestricted grant support from AbbVie for the Hepatitis C Test and Treat pilot study in Auckland, New Zealand

3. He is the Associate Editor of the *Journal of Hepatology*

4. He is a sponsored lecturer for the HCV Elimination Leaders Conference series for AbbVie

Abbreviations: HCV, hepatitis C virus; HBV, hepatitis B virus.
Introduction

• There remains significant unmet medical need for a curative, well-tolerated chronic hepatitis B virus (HBV) treatment with a finite duration

• VIR-2218 is an investigational small interfering ribonucleic acid (siRNA) targeting the HBx region of the HBV genome\(^1\)

• VIR-3434 is an investigational Fc-engineered human monoclonal antibody targeting the conserved antigenic loop of HBsAg\(^2\)

• Here we report preliminary data from an ongoing trial evaluating the safety, tolerability, and antiviral activity of short-duration combination regimens of VIR-2218 and VIR-3434 in virally suppressed participants with chronic HBV infection

Abbreviations: Fc, Fragment, crystallizable; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HBx, hepatitis B virus X protein; siRNA, small interfering ribonucleic acid.
VIR-2218 and VIR-3434 Target Different Steps in the HBV Replication Cycle

VIR-2218

Silencing of all HBV RNAs

1. Inhibition of viral entry (neutralization)

VIR-3434

2. Presentation to and stimulation of T cells (vaccinal effect)

3. Clearance of HBsAg and delivery to antigen-presenting cells

Abbreviations: cccDNA, covalently closed circular DNA; DNA, deoxyribonucleic acid; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; intDNA, integrated DNA; RNA, ribonucleic acid; SVPs, subviral particles.
VIR-2218 and VIR-3434 as Monotherapy Treatments Both Achieve HBsAg Reduction > 1 log$_{10}$ IU/mL

Abbreviations: HBsAg, hepatitis B surface antigen.

VIR-2218 200 mg every 4 weeks for 2 vs. 6 doses achieves mean HBsAg reductions of 1.6 to 2.0 log$_{10}$ IU/mL at nadir

VIR-3434 single dose of 6 to 300 mg rapidly achieves mean HBsAg reductions of 1.3 to 2.2 log$_{10}$ IU/mL at nadir
MARCH Study: Evaluating Combinations of VIR-2218 and VIR-3434

Study aims
- To evaluate the safety and tolerability of regimens containing VIR-2218 and VIR-3434
- To evaluate the efficacy of regimens containing VIR-2218 and VIR-3434

Primary endpoints
- Proportion of participants with treatment-emergent adverse events or serious adverse events
- HBsAg loss at end of treatment
- HBsAg loss at 24 weeks post-end of treatment

Secondary endpoints
- Proportion of participants with serum HBsAg < 10 IU/mL at end of treatment
- Absolute serum HBsAg and change from baseline

Abbreviations: HBsAg, hepatitis B surface antigen.
Key Inclusion/Exclusion Criteria

Inclusion

- ✔ Age 18-65 years
- ✔ Chronic HBV infection defined as a positive serum HBsAg, HBV DNA, or HBeAg on 2 occasions at least 6 months apart
- ✔ On NRTI therapy for ≥ 2 months
- ✔ HBV DNA < 100 IU/mL
- ✔ Cohorts 2 and 3 only: HBsAg < 3,000 IU/mL

Exclusion

- ❌ Significant fibrosis or cirrhosis (FibroScan > 8.5 kPa at screening or Metavir F3/F4 liver biopsy within 1 year)
- ❌ Direct bilirubin or INR > ULN
- ❌ ALT or AST > 3 x ULN
- ❌ Coinfection with HIV, HCV, or hepatitis Delta
- ❌ Immunosuppressive therapy

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; DNA, deoxyribonucleic acid; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; INR, international normalised ratio; NRTI, nucleos(t)ide reverse transcriptase inhibitor; ULN, upper limit of normal.
MARCH: Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 N=17</th>
<th>Cohort 2 N=4</th>
<th>Cohort 3 N=19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>51.0 (26–64)</td>
<td>49.0 (47–50)</td>
<td>48.0 (34–63)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12 (70.6)</td>
<td>4 (100.0)</td>
<td>11 (57.9)</td>
</tr>
<tr>
<td>Female</td>
<td>5 (29.4)</td>
<td>0</td>
<td>8 (42.1)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (5.9)</td>
<td>0</td>
<td>12 (63.2)</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander</td>
<td>2 (11.8)</td>
<td>2 (50.0)</td>
<td>2 (10.5)</td>
</tr>
<tr>
<td>White</td>
<td>12 (70.6)</td>
<td>1 (25.0)</td>
<td>5 (26.3)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (11.8)</td>
<td>1 (25.0)</td>
<td>0</td>
</tr>
<tr>
<td>BMI (kg/m²), median (range)</td>
<td>25.8 (19.6–34.1)</td>
<td>27.4 (21.2–33.9)</td>
<td>24.1 (18.7–34.5)</td>
</tr>
<tr>
<td>Baseline HBsAg Levels (IU/mL), median (range)</td>
<td>4,270.5 (759.7–16,294.3)</td>
<td>1,901.2 (33.1–3,977.4)</td>
<td>1,098.4 (83.2–3,241.2)</td>
</tr>
<tr>
<td>Baseline HBsAg Levels, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 10,000 IU/mL</td>
<td>3 (17.6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,000 - < 10,000 IU/mL</td>
<td>13 (76.5)</td>
<td>3 (75.0)</td>
<td>10 (52.6)</td>
</tr>
<tr>
<td>100 - < 1,000 IU/mL</td>
<td>1 (5.9)</td>
<td>0</td>
<td>7 (36.8)</td>
</tr>
<tr>
<td>< 100 IU/mL</td>
<td>0</td>
<td>1 (25.0)</td>
<td>2 (10.5)</td>
</tr>
<tr>
<td>HBeAg Status at Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>16 (94.1)</td>
<td>3 (75.0)</td>
<td>16 (84.2)</td>
</tr>
<tr>
<td>Positive</td>
<td>1 (5.9)</td>
<td>1 (25.0)</td>
<td>3 (15.8)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen.
Combination Treatment with VIR-2218 and VIR-3434 Was Generally Well Tolerated

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=17</td>
<td>N=4</td>
<td>N=19</td>
</tr>
<tr>
<td>Any AE, n (%)</td>
<td>4 (23.5)</td>
<td>2 (50.0)</td>
<td>9 (47.4)</td>
</tr>
<tr>
<td>Grade 1</td>
<td>1 (5.9)</td>
<td>2 (50.0)</td>
<td>8 (42.1)</td>
</tr>
<tr>
<td>Grade 2</td>
<td>3 (17.6)</td>
<td>0</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Treatment-related</td>
<td>0</td>
<td>0</td>
<td>2 (10.5)</td>
</tr>
<tr>
<td>SAE, n</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AE Leading to Study Drug Discontinuation, n</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Study Discontinuations, n</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALT elevations, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>5 (29.4)</td>
<td>0</td>
<td>10 (52.6)</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1 (5.9)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- All AEs were mild or moderate; no AEs led to treatment discontinuation
- Treatment-related AEs of malaise and myalgia (n=1) and injection-site pain (n=1) were reported
 - All were grade 1 and resolved on treatment

Abbreviations: AE, adverse event; ALT, alanine aminotransferase; SAE, serious adverse event.
VIR-2218 Plus VIR-3434 Achieved Mean HBsAg Reductions > 2.5 log$_{10}$ IU/mL at End of Treatment

HBsAg kinetics demonstrate additive reductions from VIR-2218 and VIR-3434

All participants achieved > 1.5 log$_{10}$ IU/mL reductions from baseline HBsAg at end of treatment

Abbreviations: HBsAg, hepatitis B surface antigen; SD, standard deviation.
Most Participants Achieved HBsAg < 10 IU/mL at End of Treatment

No participants achieved HBsAg loss at end of treatment

Abbreviations: HBsAg, hepatitis B surface antigen; QW, every week; Q4W, every 4 weeks.
Summary of Results

- VIR-2218 and VIR-3434 combination regimens up to 20 weeks were generally well tolerated and associated with mostly mild adverse events.

- VIR-2218 and VIR-3434 combination regimens achieved mean HBsAg reductions greater than 2.5 log₁₀ IU/mL in all cohorts, and absolute HBsAg levels less than 10 IU/mL were achieved in most participants.

- Patterns of response demonstrate additive HBsAg reduction from the complementary modes of action of VIR-2218 and VIR-3434.

Abbreviations: HBsAg, hepatitis B surface antigen.
Key Takeaways

- The HBsAg declines achieved with the combination of VIR-2218 plus VIR-3434 are among the largest seen to date with novel HBV therapies.

- These data support the continued evaluation of combination regimens containing VIR-2218 and VIR-3434 for the functional cure of chronic HBV infection.

- Patterns of response suggest that longer durations of treatment may achieve additional reduction in HBsAg.

- Cohorts evaluating longer durations of treatment with VIR-2218 plus VIR-3434 or VIR-3434 monotherapy, as well as regimens evaluating the addition of interferon, are currently recruiting in this ongoing trial (NCT04856085).

Abbreviations: HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus.
MARCH Study: Evaluating Combinations of VIR-2218, VIR-3434, and/or PEG-IFNα

Abbreviations: PEG-IFNα, pegylated interferon alfa-2a.
Acknowledgments

We thank the study participants, site coordinators, and study investigators, especially those impacted by the ongoing conflict in Ukraine. This study is being funded by Vir Biotechnology, Inc.

Canada
Brian Conway, Vancouver ID Research and Care Centre Society
Jordan Feld, Toronto Centre For Liver Disease
Magdy Elkhashab, Toronto Liver Centre

Germany
Christoph Antoni, Universitätsmedizin Mannheim (UMM)
Eugen Zizier, Universitätsklinikum Ulm
Heiner Wedemeyer, Medizinische Hochschule Hannover
Kathrin Sprinzl, Medizinische Klinik I

Hong Kong
Grace Wong, Prince of Wales Hospital
Man-Fung Yuen, Queen Mary Hospital
Wai-man Yip, Alice Ho Miu Ling Nethersole Hospital

Malaysia
Haniza BT Omar, Hospital Selayang
Rosaida BT Mohd Said, Hospital Serdang
Ruvena Bhavani K N Rajaram, University Malaya Medical Centre

Moldova
Alina Jucov, ICS ARENSIA Exploratory Medicine SRL

New Zealand
Dean Quinn, P3 Research Wellington
Edward Gane, Auckland Clinical Studies
Richard Stubbs, P3 Research Tauranga
Tien-Huey Lim, Waikato Hospital

Romania
Anca Sreinu Cercel, ARENSIA Exploratory Medicine Research Clinic, National Institute of Infectious Diseases “Matei Bals”

South Korea
Jung-hwan Yoon, Seoul National University Hospital
Ki-Tae Yoon, Pusan National University Yangsan Hospital
Won Young Tak, Kyungpook National University Hospital
Young Suk Lim, Asan Medical Center

Taiwan
Chao-Wei Hsu, Chang Gung Memorial Hospital - Linkou
Chi-Yi Chen, Ditmanson Medical Foundation Chia-Yi Christian Hospital
Chun-Jen Liu, National Taiwan University Hospital
Sheng-Shun Yang, Taichung Veterans General Hospital
Tsung-Hui Hu, Chang Gung Memorial Hospital - Kaohsiung
Wan-Long Chuang, Kaohsiung Medical University Hospital

Ukraine
Marta Dobryanska, ARENSIA Exploratory Medicine Research Clinic Harmonyia Karsy Medical Center

United Kingdom
Alison Uriel, North Manchester General Hospital
David Mutimer, UHB NHS Foundation Trust, Queen Elizabeth Hospital
Kosh Agarwal, King’s College Hospital
Patrick Kennedy, Barts Liver Centre

United States
Eugene Schiff, University of Miami
Federico Hinestrosa, Orlando Immunology Center
Jennifer Price, University of California San Francisco
Mark Sulkowski, Johns Hopkins University
Ronald Nahass, ID Care Inc.

Editorial support was provided by Oxford PharmaGenesis, and funded by Vir Biotechnology, Inc.